
Learning Deterministic Regular Expressions for the
Inference of Schemas from XML Data

Geert Jan Bex Wouter Gelade∗ Frank Neven Stijn Vansummeren†

Hasselt University/Transnational University of Limburg, Belgium
firstname.lastname@uhasselt.be

ABSTRACT
Inferring an appropriate DTD or XML Schema Definition
(XSD) for a given collection of XML documents essentially
reduces to learning deterministic regular expressions from
sets of positive example words. Unfortunately, there is no
algorithm capable of learning the complete class of deter-
ministic regular expressions from positive examples only, as
we will show. The regular expressions occurring in practi-
cal DTDs and XSDs, however, are such that every alphabet
symbol occurs only a small number of times. As such, in
practice it suffices to learn the subclass of regular expressions
in which each alphabet symbol occurs at most k times, for
some small k. We refer to such expressions as k-occurrence
regular expressions (k-OREs for short). Motivated by this
observation, we provide a probabilistic algorithm that learns
k-OREs for increasing values of k, and selects the one that
best describes the sample based on a Minimum Description
Length argument. The effectiveness of the method is empir-
ically validated both on real world and synthetic data. Fur-
thermore, the method is shown to be conservative over the
simpler classes of expressions considered in previous work.

Categories and Subject Descriptors
F.4.3 [Mathematical Logic and Formal Languages]:
Formal Languages; I.2.6 [Artificial Intelligence]: Learn-
ing; I.7.2 [Document and Text Processing]: Document
Preparation

General Terms
Algorithms, Languages, Theory

Keywords
XML, regular expressions, schema inference

1. INTRODUCTION
Recent studies stipulate that schemas accompanying col-

lections of XML documents are sparse and erroneous in
practice. Indeed, Barbosa et al. [6, 39] have shown that
approximately half of the XML documents available on the

∗
Research Assistant of the Research Foundation - Flanders (FWO).
†
Postdoctoral Fellow of the Research Foundation - Flanders (FWO).

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

web do not refer to a schema. In addition, Bex et al. [11,
38] noted that about two-thirds of XML Schema Defini-
tions (XSDs) gathered from schema repositories and from
the web at large are not valid with respect to the W3C XML
Schema specification [50], rendering them essentially useless
for immedidate application. A similar observation was made
by Sahuguet [47] concerning Document Type Definitions
(DTDs). Nevertheless, the presence of a schema strongly
facilitates optimization of XML processing (cf., e.g., [7, 18,
23, 28, 36, 37, 42]) and various software development tools
such as Castor [1] and SUN’s JAXB [2] rely on schemas as
well to perform object-relational mappings for persistence.
Additionally, the existence of schemas is imperative when
integrating (meta) data through schema matching [46] and
in the area of generic model management [8]. Based on the
above described benefits of schemas and their unavailability
in practice, it is essential to devise algorithms that can infer
a schema for a given collection of XML documents when no
(valid) one is present. The latter problem is also acknowl-
edged by Florescu [26] who emphasizes that in the context
of data integration “We need to extract good-quality schemas
automatically from existing data and perform incremental
maintenance of the generated schemas”.

Both DTDs and XSDs can be conveniently abstracted by
grammar rules with regular expressions on the right-hand
side [38, 40]. Schema inference then reduces to learning
regular expressions from a set of example strings [10, 12, 31].
To infer a DTD, for example, it suffices to derive for every
element name n a regular expression describing the strings of
element names allowed to occur below n. To illustrate, from
the strings author title, author title year, and author

author title year appearing under <book> elements in a
sample XML corpus, we could derive the rule

book→ author
+
title year?

Although XSDs are more expressive than DTDs, and al-
though XSD inference is therefore more involved than DTD
inference, derivation of regular expressions remains one of
the main building blocks on which XSD inference algorithms
are built. In fact, apart from also inferring atomic data
types, systems like Trang [20] and XStruct [34] simply infer
DTDs in XSD syntax. The more recent iXSD algorithm [12]
does infer true XSD schemas by first deriving a regular ex-
pression for every context in which an element name appears,
where the context is determined by the path from the root
to that element, and subsequently reduces the number of
contexts by merging similar ones.

So, the effectiveness of DTD or XSD schema learning al-

825

WWW 2008 / Refereed Track: XML and Web Data - XML I April 21-25, 2008 · Beijing, China

gorithms is strongly determined by the accuracy of the em-
ployed regular expression learning method. The present pa-
per presents a method to reliably learn regular expressions
that are far more complex than the classes of expressions
previously considered in the literature.

The W3C specification of both DTDs and XSDs requires
the regular expressions occurring in them to be deterministic
(also known as the Unique Particle Attribution in [50]). We
extend Gold’s [32] seminal result, stating the impossibility
to learn the complete class of regular expressions from pos-
itive examples only, to the subclass of deterministic regular
expressions. This means that no matter how many example
strings are provided, no algorithm can learn every target de-
terministic regular expression. By the dependence of schema
inference on regular expression learning, this negative result
also excludes the possibility of a sound and complete infer-
ence algorithm for the complete classes of DTDs and XSDs.

An examination of 819 DTDs and XSDs gathered form the
Cover Pages [22] (including many high-quality XML stan-
dards) as well as from the web at large reveals, however, that
the regular expressions occurring in practical schemas are
such that every alphabet symbol occurs only a small number
of times [38]. In practice, therefore, it suffices to learn the
subclass of deterministic regular expressions in which each
alphabet symbol occurs at most k times, for some small k.
We refer to such expressions as k-occurrence regular expres-
sions (k-OREs for short). For example, ((b?(a+ c))+d)+)e
is a 1-ORE while a(a+ b)∗ is a 2-ORE.

Actually, the above examination showed that in the ma-
jority of the cases k = 1. Motivated by this observation, Bex
et al [10] provided a practical learning algorithm for the class
of deterministic 1-OREs. Unfortunately, this algorithm can
only output 1-OREs even when the target regular expression
is not and will in that case only return an approximation of
the target expression. It is therefore desirable to also have
learning algorithms for the class of deterministic k-OREs
with k ≥ 2. Furthermore, as the exact k-value for the target
expression, although small, is unknown in a schema inference
setting, we also require an algorithm capable of determining
the best value of k automatically.

We begin our study of this problem in Section 3 by show-
ing that, for each fixed k, the class of deterministic k-OREs
is learnable from positive examples only. We also argue,
however, that this theoretical algorithm is unlikely to work
well in practice as it does not provide a method to auto-
matically determine the best value of k and needs samples
whose size can be exponential in the size of the alphabet to
successfully learn some target expressions.

In view of these observations, we provide in Section 4 the
practical algorithm iDRegEx. Given a sample of strings S,
iDRegEx derives corresponding deterministic k-OREs for
increasing values of k and utilizes a minimum description
length argument to choose the best one. The main technical
contribution lies in the subroutine iKore used to derive the
actual k-OREs for S. Indeed, while for the special case
where k = 1 one can derive a k-ORE by first learning an
automaton A for S using the inference algorithm of Garcia
and Vidal [30], and by subsequently translating A into a
1-ORE [10], this approach does not work when k ≥ 2. In
particular, the algorithm of Garcia and Vidal only works
when learning languages that are “n-testable” for some fixed
natural number n [30]. Although every language definable
by a 1-ORE is 2-testable [10], there are languages definable

by a 2-ORE, like a∗ba∗, that are not n-testable for any
n. iKore therefore uses a probabilistic method based on
Hidden Markov Models to learn an automaton for S, which
is subsequently translated into a k-ORE.

The effectiveness of iDRegEx is empirically validated in
Section 5 both on real world and synthetic data. In par-
ticular, we show that the algorithm is conservative over the
real-world corpus of 1-OREs in [12]. That is, iDRegEx
chooses each time the target 1-ORE from among all gener-
ated candidate expressions (including some 4-OREs). We
also tested iDRegEx on a set of 100 synthetic expressions
of diverse densities. From these 88 where derived exactly,
for the remaining 12 a super-approximation was obtained.

2. RELATED WORK
Semi-structured data. In the context of semi-structured
data, the inference of schemas as defined in [16, 44] has been
extensively studied [33, 41]. No methods were provided to
translate the inferred types to regular expressions, however.

DTD and XSD inference. In the context of DTD in-
ference, Bex et al [10] gave in earlier work two inference
algorithms: one for learning 1-OREs and one for learning
the subclass of 1-OREs known as chain regular expressions.
The latter class can also be learned using Trang [20], state
of the art software written by James Clark that is primar-
ily intended as a translator between the schema languages
DTD, Relax NG [21], and XSD, but also infers a schema for
a set of XML documents. In contrast, our goal in this paper
is to infer the more general class of deterministic expres-
sions. xtract [31] is another regular expression learning
system with similar goals. We note that xtract also uses
the MDL principle to choose the best expression from a set
of candidates. We compare these approaches in Section 5.

Other relevant DTD inference research is [49] and [19] that
learn finite automata but do not consider the translation to
deterministic regular expressions. Also, in [51] a method is
proposed to infer DTDs through stochastic grammars where
right-hand sides of rules are represented by probabilistic au-
tomata. No method is provided to transform these into
regular expressions. Although Ahonen [4] proposes such a
translation, the effectiveness of her algorithm is only illus-
trated by a single case study of a dictionary example; no
experimental study is provided.

Also relevant are the XSD inference systems [12, 20, 34]
that, as already mentioned, rely on the same methods for
learning regular expressions as DTD inference.

Regular expression inference. Most of the learning of
regular languages from positive examples in the computa-
tional learning community is directed towards inference of
automata as opposed to inference of regular expressions [5,
43, 48]. However, these approaches learn strict subclasses
of the regular languages which are incomparable to the sub-
classes considered here. Some approaches to inference of
regular expressions for restricted cases have been considered.
For instance, Brāzma [13] showed that regular expressions
without union can be approximately learned in polynomial
time from a set of examples satisfying some criteria. Fer-
nau [24] provided a learning algorithm for regular expres-
sions that are finite unions of pairwise left-aligned union-free
regular expressions. The development is purely theoretical,
no experimental validation has been performed.

826

WWW 2008 / Refereed Track: XML and Web Data - XML I April 21-25, 2008 · Beijing, China

HMM learning. Although there has been work on Hidden
Markov Model structure induction [45, 29], the requirement
in our setting that the resulting automaton is deterministic
is, to the best of our knowledge, unique.

3. DEFINITIONS AND BASIC RESULTS

Deterministic regular expressions. In this article we
are interested in learning regular expressions r of the form

r ::= ε | σ | r r | r + r | r? | r+ | r∗,

where ε denotes the empty word and σ ranges over symbols
in a finite alphabet Σ. Note that the empty language (∅) is
not allowed as basic expression. As usual, we write L(r) for
the language defined by regular expression r.

The class of all regular expressions is actually too large
for our purposes, as both DTDs and XSDs require the reg-
ular expressions occurring in them to be deterministic (also
sometimes called one-unambiguous [15]). Intuitively, a reg-
ular expression is deterministic if, without looking ahead in
the input word, it allows to match each symbol of that word
uniquely against a position in the expression when process-
ing the input in one pass from left to right. For instance,
(a+ b)∗a is not deterministic as already the first symbol in
the word aaa could be matched by either the first or the sec-
ond a in the expression. Without lookahead, it is impossible
to know which one to choose. The equivalent expression
b∗a(b∗a)∗, on the other hand, is deterministic. Formally, let
r stand for the regular expression obtained from r by re-
placing the ith occurrence of alphabet symbol σ in r by σi,
for every i and σ. For example, for r = b∗a(b∗a)∗ we have
r = b∗1a1(b∗2a2)∗.

Definition 1. A regular expression r is deterministic if
there are no words wσiv and wσjv

′ in L(r) such that i 6= j.

Equivalently, an expression is deterministic if the Glushkov-
construction translates it into a deterministic finite automa-
ton rather than a non-deterministic one [15]. Not every non-
deterministic regular expression is equivalent to a determin-
istic one [15]. Thus, semantically, the class of deterministic
regular expressions forms a strict subclass of the class of all
regular expressions.

Learning in the limit. For the purpose of inferring DTDs
and XSDs from XML data, we are hence in search of an
algorithm that, given enough sample words of a target de-
terministic regular expression r, returns a deterministic ex-
pression r′ equivalent to r. In the framework of learning in
the limit [32], such an algorithm is said to learn the deter-
ministic regular expressions from positive data.

Definition 2. Define a sample to be a finite set of words
and let R be a subclass of the regular expressions. An algo-
rithm M mapping samples to expressions in R is said to
learn R from positive data if (1) S ⊆ L(M(S)) for every
sample S and (2) to every r ∈ R we can associate a so-
called characteristic sample Sr ⊆ L(r) such that, for each
sample S with Sr ⊆ S ⊆ L(r), M(S) is equivalent to r.

Intuitively, the first condition says that M must be sound ;
the second that M must be complete, given enough data. A
class of regular expressions R is learnable in the limit from
positive data if an algorithm exists that learns R. For the

class of all regular expressions, it was shown by Gold that
no such algorithm exists [32]. In fact, he showed that every
class of regular expressions that contains all non-empty finite
languages and at least one infinite language is not learnable
in the limit from positive data. Since deterministic regular
expressions like a∗ define infinite languages, and since every
non-empty finite language can be defined by a deterministic
expression (as we show in the full version of this paper [9]), it
follows that also the class of deterministic regular expressions
is not learnable in the limit.

Theorem 1. The class of deterministic regular expres-
sions is not learnable in the limit from positive data.

Bounded number of symbol occurrences. Theorem 1
immediately excludes the possibility for an algorithm to in-
fer the full class of DTDs, and therefore also the even larger
class of XSDs. In practice, however, regular expressions oc-
curring in DTDs and XSDs are concise rather than arbi-
trarily complex. Indeed, a study of 819 DTDs and XSDs
gathered from the Cover Pages [22] (including many high-
quality XML standards) as well as from the web at large, re-
veals that regular expressions occurring in practical schemas
are such that every alphabet symbol occurs at most k times,
with k small. Actually, in the majority of the cases k = 1.

Definition 3. A regular expression is k-occurrence if ev-
ery alphabet symbol occurs at most k times in it.

For example, (b?(a + c))+d is a 1-ORE, a(a + b)∗ is a
2-ORE, and a(ba)∗a is 3-ORE. We abbreviate ‘k-occurrence
regular expression’ by k-ORE and denote the class of all
deterministic k-OREs over Σ by Dk-ORE(Σ). We prove in
the full version of this paper [9]:

Theorem 2. For every k and Σ there exists an algorithm
M that learns Dk-ORE(Σ) from positive data. Further-
more, M runs in time polynomial in the size of the input
sample, and in time exponential in k and the size of Σ.

While this shows that the class of deterministic k-OREs is
better suited for learning from positive data than the com-
plete class of deterministic expressions, it does not provide
a useful practical algorithm, for the following reasons.

First and foremost, M runs in time exponential in the size
of the alphabet. Second the notion of learning in the limit is
a very liberal one: correct expressions need only be derived
when sufficient data is provided, i.e., when the input sam-
ple is a superset of the characteristic sample for the target
expression r. The following theorem shows that there are
expressions for which the characteristic sample of any sound
and complete learning algorithm is at least exponential in
the size of the alphabet.

Theorem 3. Let Σ = {σ1, . . . , σn} be an alphabet of size
n, let r1 = (σ1σ2 + σ3 + · · ·+ σn)+, and let r2 = Σ+σ1Σ+.
For any algorithm that learns D(2n + 3)-ORE(Σ) and any
sample S that is characteristic for r1 or r2 we have |S| ≥∑n
i=1(n− 2)i.

The proof is in [9]. Since
∑n
i=1(n − 2)i > (n − 2)!, it

is unlikely for any sound and complete learning algorithm
to behave well on real-world samples, which are typically
incomplete and unlikely to contain all words of the charac-
teristic sample.

827

WWW 2008 / Refereed Track: XML and Web Data - XML I April 21-25, 2008 · Beijing, China

Third, while the study referred to above reveals that all
expressions in practical schemas are k-OREs for some small
k, the schema inference setting is such that we do not know
the exact value of k when given a sample. If we overestimate
k then M(S) risks being an under-approximation of the tar-
get regular expression r especially when S is incomplete. To
illustrate, consider the 1-ORE target expression r = a+b+

and the sample S = {ab, abbb, aabb}. If we overestimate k
to, say, 2 instead of 1, then M is free to output aa?b+ as
a sound answer. On the other hand, if we underestimate k
then M(S) risk being an over-approximation of r. Consider,
for instance, the 2-ORE target expression r = aa?b+ and
the same sample S = {ab, abbb, aabb}. If we underestimate
k to be 1 instead of 2, then M can only output 1-OREs,
and needs to output at least a+b+ in order to be sound. In
summary, we hence need a method to determine the most
suitable value of k.

4. THE LEARNING ALGORITHM
In view of the observations made in the previous section,

we present in this section a practical learning algorithm that
works well on incomplete data and automatically determines
the best value of k. Specifically, given a sample S, the al-
gorithm derives deterministic k-OREs for increasing values
of k and selects from these candidate expressions the one
which best describes S based on a Minimum Description
Length argument. The algorithm does not derive determin-
istic k-OREs for S directly, but uses, for each fixed k, a prob-
abilistic method to first learn an automaton for S, which is
subsequently translated into a k-ORE.

Translating automata into k-OREs. It is notoriously
difficult, however, to translate an arbitrary automaton into
a k-ORE when k is fixed. The standard state elimination
algorithm [35], for instance, often duplicates subexpressions
whenever it eliminates a state, and therefore almost always
returns an expression of size exponential in the number of
states of the automaton.

Our algorithm therefore does not learn an arbitrary au-
tomaton, but a deterministic k-OA, a specific kind of deter-
ministic automaton with (1) labels placed on states rather
than on edges in which (2) each alphabet symbol occurs at
most k times. Figure 2(f) gives an example. The underlying
idea is that every edge carries the label of the state it points
to. In this context, an accepting run for a word σ1 . . . σn is
a path s1 . . . snsout that starts at an initial state and stops
at the unique final state sout such that s1 is labeled by σ1,
s2 by σ2, . . . , and sn by σn. In other words, the 2-OA of
Figure 2(f) accepts the same language as aa?b+.

Definition 4. Formally, an automaton over Σ is a tu-
ple (V,E, I, sout, lab) where V is a finite set of states, E ⊆
(V \ {sout}) × V is the edge relation, I ⊆ V are the initial
states, sout is the final state, and lab : V \ {sout} → Σ is the
labeling function. A k-occurrence automaton (k-OA) is an
automaton in which every Σ-symbol labels at most k states.

We write L(A) for the language defined by A; out(s) for the
set {s′ | (s, s′) ∈ E} of all states reachable by an outgoing
edge from s in automaton A; and in(s) for the set {s′ |
(s′, s) ∈ E} of all states for which s has an incoming edge
in A. Furthermore, we write outσ(s) and inσ(s) for the set
of states in out(s) and in(s), respectively, that are labeled

a

b

a

b

Figure 1: The complete 2-OA over Σ = {a, b}.

by σ. As usual, an automaton A is deterministic if outσ(s)
contains at most one state, for every s and σ.

It is sufficient to learn only deterministic k-OAs since ev-
ery deterministic k-ORE can be represented as one. In-
deed, the Glushkov construction [15] for translating regular
expressions into automata always outputs a deterministic
k-OA on deterministic k-ORE inputs. Moreover, in previ-
ous work Bex et al. [10] have already proposed an algorithm
for translating k-OAs into k-OREs. This algorithm, which
we will refer to as KoaToKore in this paper1, essentially
applies an inverse Glushkov construction to its input. It
is an appealing algorithm due to the following properties,
which we prove in the full version of this paper [9]:

Theorem 4. KoaToKore is sound in the sense that, for
every k-OA A, it outputs a (possibly non-deterministic when
k > 1) k-ORE r with L(A) ⊆ L(r). It is also complete in the
sense that if A is the Glushkov translation of a deterministic
k-ORE r′, then r is deterministic and equivalent to r′.

In other words, if we manage to learn a k-OA that is the
Glushkov representation of the target expression r′, then
KoaToKore will always return a deterministic k-ORE equiv-
alent to r′. When k > 1, there can be several k-OAs rep-
resenting the same language and we could therefore learn a
non-Glushkov one. In that case, KoaToKore always re-
turns a k-ORE which is a super approximation of the tar-
get expression. Although that approximation can be non-
deterministic, since we derive k-OREs for increasing values
of k and since for k = 1 the result of KoaToKore is al-
ways deterministic (as every 1-ORE is deterministic), we
always infer at least one deterministic regular expression.
Moreover, to determine the best regular expression from the
set of generated expressions, only the deterministic ones are
considered. In fact, in our experiments on 100 synthetic reg-
ular expressions, we derived for 96 of them a deterministic
expression with k > 1, and only for 4 expressions had to
resort to a 1-ORE approximation.

Learning k-OAs probabilistically. Define the complete
k-OA Ck over alphabet Σ to be the fully connected automa-
ton over Σ that has exactly k states per alphabet symbol and
whose initial states consist of the final state plus one repre-
sentative state for each symbol. To illustrate, the complete
2-OA over {a, b} is shown in Figure 1. Clearly, L(Ck) = Σ∗.

We use a probabilistic method to learn a deterministic
k-OA for a sample S. Specifically, we view S as the re-

1Unfortunately, KoaToKore is called iDTD in [10], although
its sole purpose is to transform k-OAs into k-OREs, not DTDs.
We call it KoaToKore in this paper to avoid confusion. Also
note that KoaToKore is only illustrated and shown sound and
complete on 1-OAs in [10], although its literal definition applies
to all k-OAs.

828

WWW 2008 / Refereed Track: XML and Web Data - XML I April 21-25, 2008 · Beijing, China

sult of a stochastic process that generates words from Σ∗ by
performing random walks over Ck. First, the process picks,
among all initial states, an initial state s1 with probability
π(s1) and emits lab(s1). Then it picks, among all states
in out(s1) a state s2 with probability α(s1, s2) and emits
lab(s2). The process continues moving to new states and
emitting their labels until the final state is reached (which
does not emit a symbol). Of course, π and α must be true
probability distributions, i.e., π(s) and α(s, t) are greater or
equal than zero for all s, t;∑

all initial states s

π(s) = 1; and
∑

t∈out(s)

α(s, t) = 1 (1)

for all states s. The probability of generating a particu-
lar accepting run ~s = s1s2 . . . snsout given the process P =
(Ck, π, α) in this setting is

P [~s | P] = π(s1) · α(s1, s2) · α(s2, s3) · · ·α(sn, sout),

and the probability of generating the word w = σ1 . . . σn is

P [w | P] =
∑

all accepting runs ~s of w in Ck

P [~s | P].

Assuming independence, the probability of obtaining all words
in the sample S is then

P [S | P] =
∏
w∈S

P [w | P].

Clearly, the process that best explains the observation of S
is the one in which the probabilities π and α are such that
they maximize P [S | P].

To learn a deterministic k-OA for S we therefore first try
to infer from S the probabilities π and α that maximize
P [S | P], and use these probabilities to determine the topol-
ogy of the desired deterministic k-OA. In particular, we
remove from Ck the non-deterministic edges with the low-
est probability as these are the least likely to contribute to
the generation of S, and are therefore the least likely to be
necessary for the acceptance of S.

The problem of inferring π and α from S is well-studied
in Machine Learning, where our stochastic process P corre-
sponds to a particular kind of Hidden Markov Model some-
times referred to as a Partially Observable Markov Model
(POMM for short)2. Inference of π and α is generally ac-
complished by the well-known Baum-Welsh algorithm [45]
that adjusts initial values for π and α until a (possibly lo-
cal) maximum is reached.

We use Baum-Welsh in our learning algorithm iKore
as shown in Algorithm 1. In line 1, iKore initializes the
stochastic process P to the triple (Ck, π, α) where the al-
phabet of Ck is taken to consist of all symbols occurring
in words in S; α is chosen randomly (subject to the con-
straints in (1)); π(sout) is the fraction of empty strings in S;
and for every other initial state s with lab(s) = σ, π(s) is
the fraction of words in S that start with σ. It is important
to emphasize that, since we are trying to model a stochastic
process, multiple occurrences of the same word in S are im-
portant. A sample should therefore no longer be considered
as a set, but as a bag. Line 2 then optimizes the initial values
for π and α using the Baum-Welsh algorithm.

2In contrast to the general Hidden Markov Model, a POMM can
emit only one alphabet symbol per state.

Algorithm 1 iKore

Require: a sample S, a value for k
Ensure: a k-ORE r with S ⊆ L(r)
1: P ← init(k, S)
2: P ← BaumWelsh(P, S)
3: A← Disambiguate(P, S)
4: A← Prune(A,S)
5: return KoaToKore(A)

Algorithm 2 Disambiguate

Require: a POMM P = (A, π, α) and sample S
Ensure: a deterministic k-OA
1: Initialize queue Q to the initial states of A with π(s) > 0
2: Initialize set of marked states D ← ∅
3: while Q is non-empty do
4: s← first(Q)
5: while some σ ∈ Σ has | outσ(s)| > 1 do
6: pick t ∈ outσ(s) with α(s, t) = maxt′∈out(s) α(s, t′)
7: set α(s, t)←

∑
t′∈outσ(s) α(s, t′)

8: for all t′ in outσ(s) \ {t} do
9: delete edge (s, t′) from A

10: set α(s, t′)← 0
11: P ← BaumWelsh(P, S)
12: if S 6⊆ L(A) then Fail
13: add s to marked states D and pop s from Q
14: enqueue all states in out(s) \D to Q
15: return A

With these probabilities in hand Disambiguate, shown
in Algorithm 2, determines the topology of the desired de-
terministic k-OA for S. In a breadth-first manner, it picks
for each state s and each symbol σ the state t ∈ outσ(s)
with the highest probability and deletes all other edges to
states labeled by σ. Line 7 merely ensures that α continues
to be a probability distribution after this removal and line
11 adjusts π and α to the new topology. Line 12 is a sanity
check that ensures that we have not removed edges neces-
sary to accept all words in S; Disambiguate reports failure
otherwise. The result of a successful run of Disambiguate
is a deterministic k-OA which nevertheless may have edges
(s, t) for which there is no witness in S (i.e., a word in S
whose unique accepting run traverses (s, t)). The function
Prune in line 4 of iKore removes all such edges. It also re-
moves all inital states without a witness in S. Finally, line 5
transforms the resulting deterministic k-OA into a k-ORE.
Figure 2 illustrates a hypothetical run of iKore.

Denote by i1-ORE(S) the earlier algorithm of [10] ap-
plied to sample S which derives a 1-ORE by first learning
a 1-OA through the algorithm 2T-INF [30] and then ap-
plies KoaToKore to obtain a 1-ORE. The next Theorem
says that iKore is a conservative extension of 1-ORE as for
k = 1, it produces the same output as i1-ORE (though in a
very inefficient manner).

Theorem 5. For every sample S, iKore(S, 1) does not
fail and returns the same 1-ORE as i1-ORE(S).

For the proof it suffices to note that on complete 1-OAs the
Disambiguate step does not remove any edges and that the
Prune step hence produces the same deterministic automa-
ton as 2T-INF.

829

WWW 2008 / Refereed Track: XML and Web Data - XML I April 21-25, 2008 · Beijing, China

a1

b1

a2

b2

1

0

0

α a1 a2 b1 b2 sout
a1 0.2 0.3 0.3 0.1 0.1
a2 0.4 0.1 0.2 0.1 0.2
b1 0.1 0.3 0.3 0.2 0.1
b2 0.1 0.1 0.2 0.5 0.1

(a) Process P returned by init with
random values for α.

a1

b1

a2

b2

1

0

0

α a1 a2 b1 b2 sout
a1 0.2 0.3 0.3 0.19 0.01
a2 0.01 0.01 0.6 0.37 0.01
b1 0.01 0.01 0.5 0.28 0.2
b2 0.01 0.01 0.33 0.5 0.15

(b) Process P after first training by
BaumWelsh.

a1

b1

a2

b2

1

0

0

α a1 a2 b1 b2 sout
a1 0 0.5 0.49 0 0.01
a2 0.01 0.01 0.6 0.37 0.01
b1 0.01 0.01 0.5 0.28 0.2
b2 0.01 0.01 0.33 0.5 0.15

(c) Process P after first disambiguation
step (for a1). Edges to a1 and b2 are
removed.

a1

b1

a2

b2

1

0

0

α a1 a2 b1 b2 sout
a1 0 0.5 0.49 0 0.01
a2 0.01 0.01 0.6 0.37 0.01
b1 0.02 0 0.78 0 0.2
b2 0.01 0.01 0.38 0.4 0.2

(d) Process P after second disambigua-
tion step (for b1). Edges to a2 and
b2 are removed.

a

b

a

b

(e) Automaton A returned by
Disambiguate.

a

b

a

(f) Automaton A returned by
Prune. It accepts the same
language as aa?b+.

Figure 2: Example run of iKore for k = 2 with target language aa?b+. For the process P in (a)-(d), π is
indicated on the edges of the initial states whereas α is listed in table-form. To distinguish different states
with the same label, we have indexed the labels.

The whole algorithm. Unfortunately, it is well-known
that, depending on the initial probabilities for π and α,
BaumWelsh may converge to a local maximum that is not
necessarily global. To increase the probability of finding a
global maximum and hence correctly learning the target reg-
ular expression from S, we apply iKore a number of times
N with independently chosen random seed values for α. The
whole learning algorithm iDRegEx is then shown in Algo-
rithm 3 where the function best(C) selects the“best” regular
expression from the candidate set of expressions C according
to the following measure.

The Minimum Description Length measure. Intu-
itively, we want to select from C the simplest deterministic
expression that describes S the best, i.e., the expression that
overgeneralizes S the least. To measure the degree of gen-

Algorithm 3 iDRegEx

Require: a sample S
Ensure: a k-ORE r
1: initialize candidate set C ← ∅
2: for k = 1 to kmax do
3: for n = 1 to N do
4: add iKore(S, k) to C
5: return best(C)

eralisation, we employ the data encoding cost of Adriaans
and Vitányi [3] that compares the size of S with the size of
the language defined by an inferred k-ORE r. Specifically,
Adriaans and Vitányi define:

datacost(r, S) :=

Lmax∑
`=0

(
2 · log2 `+ log2

(
|L`(r)|
|S`|

))

where Lmax = 2k|Σ|+ 1, S` is the subset of words in S that
have length `, and L`(r) is the subset of words in L(r) that
have length `. Although the above formula is numerically
difficult to compute, there is an easier estimation procedure;
see [3] for details.

The complexity of a regular expression, i.e., its model en-
coding cost, is simply taken to be its length, thereby prefer-
ring shorter expressions over longer ones. The best regular
expression in the candidate set C is now the deterministic
one that minimizes both model and data encoding cost.

We already mentioned that xtract [31] also utilizes the
Minimum Description Length principle. However, their mea-
sure for data encoding cost depends on the concrete struc-
ture of the regular expressions while ours only depends on
the language defined by them and is independent of the rep-
resentation. Therefore, in our setting, when two equivalent
expressions are derived, the one with the smallest model
cost, that is, the simplest one, will always be taken.

830

WWW 2008 / Refereed Track: XML and Web Data - XML I April 21-25, 2008 · Beijing, China

5. EXPERIMENTS
In this section we validate our approach by means of an ex-

perimental analysis. All experiments were performed using
a prototype implementation of iDRegEx written in Java
executed on a Pentium M 1.73 GHz with 1GB RAM. For
the BaumWelsh subroutine we have gratefully used Jean-
Marc François’ Jahmm library [27], which is a faithful im-
plementation of the algorithms described in Rabiner’s Hid-
den Markov Model tutorial [45]. Since Jahmm strives for
clarity rather than performance and since only limited pre-
cautions are taken against underflows, our prototype should
be seen as a proof of concept rather than a polished prod-
uct. In particular, underflows currently limit us to regular
expressions whose total number of symbol occurrences is at
most 40. To illustrate, the total number of symbol occur-
rences in aa?b+ is 3. Furthermore, the lack of optimiza-
tion in Jahmm leads to average running times ranging from
4 minutes for expressions with alphabet size |Σ| = 5 to 9
hours for expressions with alphabet size 15, details are shown
in Table 1. Experience with Hidden Markov Model learn-
ing in bio-informatics [25], for instance, suggests that both
the running time and number of symbol occurrences can be
significantly improved by moving to an industrial-strength
BaumWelsh implementation. Our focus for the rest of the
section will therefore be on the precision of iDRegEx.

|Σ| mean median |S|
5 239 154 300
10 7246 3585 1000
15 31881 19537 1000

Table 1: Mean and median runtime in seconds for
learning expressions of varying alphabet size.

For all the experiments described below we take kmax = 4
and N = 10 in Algorithm 3.

5.1 Real-world target expressions and
real-world samples

First, we want to test how iDRegEx performs on real-
world data. Since the number of publicly available XML
corpora with valid schemas is rather limited, we have used
as target expressions the 49 content models occurring in
the XSD for XML Schema Definitions [50] and have drawn
multiset samples for these expressions from a large corpus
of real-world XSDs harvested from the Cover Pages [22].
In other words, the goal of our first experiment is to de-
rive, from a corpus of XSD definitions, the regular expres-
sion content models in the schema for XML Schema Defini-
tions3. All 49 regular expressions were successfully derived
by iDRegEx. Since these expressions are in fact 1-OREs
and kmax is set to 4, this illustrates that iDRegEx is conser-
vative over the learning algorithm presented in [10] and does
not incorrectly infer a k-ORE with k > 1 when its target is
a 1-ORE.

The number of publicly available XML corpora with non-
1-ORE regular expressions in their schema is even more re-
stricted, and in previous work we have only been able to
identify two such real-world target expressions [10]. Because
of the limitations of our BaumWelsh implementation de-
scribed at the beginning of this section, we have reduced the

3This corpus was also used in [12] for XSD inference.

alphabet size of the second expression yielding

a1(a2 + a3)∗(a4(a2 + a3 + a5)∗)∗ and
a1?a2a3?a4?(a+

5 + ((a6 + · · ·+ a10)+a∗5)).

iDRegEx successfully derived both expressions.

5.2 Synthetic target expressions
Although the successful inference of the real-world expres-

sions in Section 5.1 suggests that iDRegEx is applicable in
real-world scenarios, we further test its behavior on a siz-
able and diverse set of regular expressions. Due to the lack
of real-world data, we have developed a synthetic regular
expression generator that is parameterized for flexibility.

Synthetic expression generation. In particular, the oc-
currence of the regular expression operators concatenation,
disjunction (+), zero-or-one (?), zero-or-more (∗), and one-
or-more (+) in the generated expressions is determined by a
user-defined probability distribution. We found that typical
values yielding realistic expressions are 1/10 for the unary
operators and 7/20 for others. The alphabet can be spec-
ified, as well as the number of times that each individual
symbol should occur. The maximum of these numbers de-
termines the value k of the generated k-ORE.

To ensure the validity of our experiments, we want to gen-
erate a wide range of different expressions. To this end, we
measure how much the language of a generated expression
overlaps with Σ∗. The larger the overlap, the greater its
density. Specifically, we define

Density(r) = 1 +
1∑Lmax

`=1 log(1 + |Σ`|)

Lmax∑
`=1

log
1 + |L`(r)|

1 + |Σ`| .

Here Σ` is the subset of words in Σ∗ with length exactly `;
L`(r) is the subset of words in L(r) with length exactly `;
and Lmax = 2k|Σ|. As such, the measure depends on the
fraction of words over Σ with length ` that are in L(r), for
each ` up to Lmax . In particular, it is 1 iff L(r) = Σ∗ and
is 0 iff L(r) = ∅. The measure can be used to ascertain
the diversity of our set of generated regular expressions by
ensuring that it covers the spectrum [0, 1].

To ensure that the generated expressions do not impede
readability by containing redundant subexpressions (as in
e.g., (a+)+), the final step of our generator is to syntactically
simplify the generated expressions using some straightfor-
ward equivalences. For instance, (a+)+ is rewritten into a+.
The entire set of rewrite rules can be found in [9]. Of course,
the resulting expression is rejected if it is non-deterministic.

To obtain a diverse target set, we synthesized expressions
with alphabet size 5 (45 expressions), 10 (45 expressions),
and 15 (10 expressions) with a variety of symbol occurrences
(k = 1, 2, 3). For each of the alphabet sizes, the expressions
were selected to cover densities ranging from 0 to 1. All in
all, this yielded a set of 100 deterministic target expressions.
A snapshot is given in Figure 3. In [9] the complete list of
expressions is listed.

Synthetic sample generation. For each of those 100 tar-
get expressions, we generated synthetic samples by trans-
forming the target expressions into stochastic processes that
perform random walks on the automata representing the ex-
pressions (cf. Section 4). The probability distributions of
these processes are derived from the structure of the origi-
nating expression. In particular, each operand in a disjunc-

831

WWW 2008 / Refereed Track: XML and Web Data - XML I April 21-25, 2008 · Beijing, China

((debab) + c)∗a
((((c+ b)b) + a)ca) + e+ d

(((ea)∗db) + b+ a+ c)+

((b+ + c+ e+ d)aab)+

((((aa) + e)+ + c)b) + b+ d
((((d+ a)∗eabcb) + c)a)?
((((ac) + b+ d)eab) + c)∗

(((((bab) + c)+ + e)?a) + d)+

((((ecb)+a) + b)+ + d+ a)?
((bagbfeid) + c+ a+ j + h)∗

((gdab) + a+ i+ c+ j + e+ f)+hb
((h∗cdfa) + j + e+ g + b+ i)∗ab
((g + b+ e+ f + i+ d)∗aba) + h+ j + c

((((h+ b+ c+ j + f)+ + e)?aaidb) + g)?
(((((dbe)∗cf) + j)hac) + b+ i)∗gad

(((((ihaaj) + d)+ + g)b) + e+ b+ f + c)+

((((eabh) + d+ j + c+ b)+f) + a+ g + i)?
(((ecgecd) + b+ d+ a+ j + f)∗ihaba)∗

(l + c+ d+m+ n)∗aojahbegcbfidke

(((c+ b)ab) + d+ i+ a)+ + j + g + f + e+ h

(((a?clfhabgd) + b+ n+ o)iedjcem)∗k

((a+ k + f + c+m+ e)+bdieclbonjgda)∗h
(((k?jghadfcelifcjbhom)+

b+ g + a+ e+ i+ n)+ + d)?
(((aedoadenhdbci) + h+ k +m+ j + g + b)∗

fccgelbifja)

((a+ + f + d+ o+ g + n+ h+ c+ b+ j + i+ e)
keacdlbm)

(((k + f + o+ a+ j)?edhldfhngicjmab)?cie)∗bg

((((a?d)+ba) + h+ g + e+ c)+ + j + i+ b)?f

Figure 3: A snapshot of the 100 generated expressions.

r1 · · · rn
p 1

r1 · · · rn
p 1 1 1

r1 + · · · + rn
p 1

r1

.

.

.

rn

p/n

p/n

1

1

r+
p 1

r
p

2/3

1/3

r?
p 1

r
p/2

p/2

1

Figure 4: From a regular expression to a probabilis-
tic automaton.

tion is equally likely and the probability to have zero or one
occurrences for the zero-or-one operator ? is 1/2 for each
option. The probability to have n repetitions in a one-or-
more or zero-or-more operator (∗ and +) is determined by
the probability that we choose to continue looping (2/3) or
choose to leave the loop (1/3). The latter values are based
on observations of real-world corpora. Figure 4 illustrates
how we construct the desired stochastic process from a reg-
ular expression r: starting from the following initial graph,

r
1 1 1

we continue applying the rewrite rules shown until each in-
ternal node is an individual alphabet symbol.

Experiments on covering samples. Our first experiment
is designed to test how iDRegEx performs on samples that
are at least large enough to cover the target regular expres-
sion, in the following sense.

Definition 5. A sample S covers a deterministic automa-
ton A if for every edge (s, t) in A there is a word w ∈ S
whose unique accepting run in A traverses (s, t). Such a
word w is called a witness for (s, t). A sample S covers a
deterministic regular expression r if it covers the automaton
obtained from S using the Glushkov construction for trans-
lating regular expressions into automata [14].

Intuitively, if a sample does not cover a target regular
expression r then there will be parts of r that cannot be
learned from S. In this sense, covering samples are the min-
imal samples necessary to learn r. Note that such samples

are far from “complete” or “characteristic” in the sense of
the theoretical framework of learning in the limit, as some
characteristic samples are bound to be of size exponential
in the size of r by Theorem 3, while samples of size at
most quadratic in r suffice to cover r. Indeed, the Glushkov
construction always yields an automaton whose number of
states is bounded by the size of r. Therefore, this automaton
can have at most |r|2 edges, and hence |r|2 witness words
suffice to cover r.

Table 2 shows how iDRegEx performs on covering sam-
ples, broken up by alphabet size of the target expressions.
The size of the sample used is depicted as well. The ta-
ble demonstrates a remarkable precision. Out of a total of
100 expressions, 88 are derived exactly. For the remaining
12 expressions that could not be derived exactly, an over-
approximation of the target expression was derived, i.e., if
the sample covered r then L(r) was a subset of the language
of the derived expression.

Table 3 shows an alternative view on the results. It shows
the success rate as a function of the density of the target ex-
pression, grouped in intervals. In particular, it demonstrates
that the method works well for every density.

A final perspective is offered in Table 4 which shows the
success rate in function of the average states per symbol κ for
an expression. The latter quantity is defined as the length of
the regular expression excluding operators, divided by its k-
value. For instance, for the expression a(a+b)+cab, κ = 6/3
since its length excluding operators is 6 and k = 3. It is clear
that the learning task is harder for increasing values of κ.
Up to values of κ ≈ 1.7, the success rate is quite high, while
it drops to around 50 % for larger values of κ. To verify
the latter, a few extra expressions with large κ values were
added to the target expressions.

|Σ| #regex successes rate |S|
5 45 39 86 % 300

10 45 42 93 % 1000
15 10 7 70 % 1000

Table 2: Success rate on the target regular expres-
sions and the sample size used per alphabet size.

It is also interesting to note that iDRegEx successfully
derived the regular expression r1 = (σ1σ2 + σ3 + · · ·+ σn)+

of Theorem 3 for n = 8, n = 10, and n = 12 from covering
samples of size 500, 800, and 1100, respectively. This is
quite surprising considering that the characteristic samples
for these expressions was proven to be of size at least (n −
2)!, i.e., 720, 40320, and 3628800 respectively. The regular
expression r2 = Σ+σ1Σ+, in contrast, was not derivable by
iDRegEx from small samples.

832

WWW 2008 / Refereed Track: XML and Web Data - XML I April 21-25, 2008 · Beijing, China

Density(r) #regex successes rate
[0.0, 0.2[24 24 100 %
[0.2, 0.4[22 18 82 %
[0.4, 0.6[20 18 90 %
[0.6, 0.8[22 21 95 %
[0.8, 1.0] 12 10 83 %

Table 3: Success rate on the target regular expres-
sions, grouped by expression density.

κ #regex successes rate
[1.2, 1.4[29 28 96 %
[1.4, 1.6[37 37 100 %
[1.6, 1.8[24 22 91 %
[1.8, 2.0[11 5 54 %
[2.0, 2.5[12 5 41 %
[2.5, 3.0] 18 12 66 %

Table 4: Success rate on the target regular expres-
sions, grouped by κ, the average number of states
per symbol.

Experiments on partially covering samples. Unfor-
tunately, samples to learn regular expressions from are of-
ten smaller than one would prefer. In an extreme, but not
uncommon case, the sample does not even entirely cover
the target expression. In this section we therefore test how
iDRegEx performs on such samples.

Definition 6. The coverage of a target regular expres-
sion r by a sample S is defined as the fraction of transitions
in the corresponding Glushkov automaton for r that have at
least one witness in S.

Note that to successfully learn r from a partially cover-
ing sample, iDRegEx needs to “guess” the edges for which
there is no witness in S. This guessing capability is built
into KoaToKore in the form of repair rules [10]. Our ex-
periments show that for target expressions with alphabet
size |Σ| = 10, this is highly effective: even at a coverage of
70%, half the target expressions can still be learned correctly
as Table 5 shows. This clearly illustrates that iDRegEx is
robust with respect to the quality of the samples.

coverage successes rate
1.0 25 100 %
0.9 16 64 %
0.8 15 60 %
0.7 13 52 %
0.6 0 0 %

Table 5: Success rate for 25 target expressions for
|Σ| = 10 for samples that provide partial coverage of
the target expressions.

We also experimented with target expressions with alpha-
bet size |Σ| = 5. In this case, the results are less promising
as Table 6 illustrates. Only approximately 25% of the target
regular expressions can be learned correctly given a partially
covering sample. This is to be expected since the absolute
amount of information missing for smaller regular expres-
sions is larger than in the case of larger expressions.

coverage successes rate
1.0 12 100 %
0.9 3 25 %
0.8 2 16 %
0.7 1 8 %
0.6 1 8 %
0.5 0 0 %

Table 6: Success rate for 12 target expressions for
|Σ| = 5 with partially covering samples.

5.3 Comparison to XTRACT
The xtract algorithm of Garofalakis et al. [31] is a regu-

lar expression learning system focusing on deriving general
regular expressions. Its precision on 1-OREs has already
been tested in [10, Table 1 and 2], where it was outperformed
by our earlier algorithm i1-ORE. As shown in Section 5.1
and Theorem 5, iDRegEx is conservative over i1-ORE, and
therefore also outperforms xtract over these expressions.

The expressions derived by xtract on non-1-OREs of
alphabet size |Σ| = 5 with a sample of 300 words show
an over-generalization to Σ∗ whereas our algorithm derives
the target regular expression flawlessly. For instance, for
the target expression (bcda + a + b + e)+ xtract returns
(a+ b+ c+ d+ e)∗.

6. CONCLUSIONS
We presented the algorithm iDRegEx for inferring deter-

ministic regular expression from a sample of words. Moti-
vated by regular expressions occurring in practice, we use a
novel measure based on the number k of occurrences of the
same alphabet symbol and derive expressions for increasing
values of k. We demonstrated the remarkable effectiveness
of iDRegEx on a large corpus of real-world and synthetic
regular expressions of different densities.

Some questions need further attention. First, in our ex-
periments, iDRegEx always derived the correct expression
or a super-approximation of the target expression. It re-
mains to investigate for which kind of input samples this
behavior can be formally proved. Second, it would also be
interesting to characterize precisely which classes of expres-
sions can be learned with our method. Although the pa-
rameter κ explains this to some extend, we probably need
more fine grained measures. A last and obvious goal for
future work is to speed up the inference of the probabilis-
tic automaton which forms the bottleneck of the proposed
algorithm. A possibility is to use an industrial strength im-
plementation of the Baum-Welsh algorithm as in [25] rather
than a straightforward one or to explore different methods
for learning probabilistic automata.

Although iDRegEx can be directly plugged in into the
XSD inference engine iXSD of [12], it would be interesting
to investigate how to extend these techniques to the more
robust class of Relax NG schemas [21].

7. REFERENCES
[1] Castor. www.castor.org.

[2] SUN Microsystems JAXB.
java.sun.com/webservices/jaxb.

[3] P. Adriaans and P. Vitanyi. The Power and Perils of MDL,
2006.

833

WWW 2008 / Refereed Track: XML and Web Data - XML I April 21-25, 2008 · Beijing, China

[4] H. Ahonen. Generating Grammars for Structured
Documents using Grammatical Inference Methods. Report
A-1996-4, Dept. of Comp. Sci., Univ. of Finland, 1996.

[5] D. Angluin and C. Smith. Inductive Inference: Theory and
Methods. ACM Computing Surveys, 15(3):237–269, 1983.

[6] D. Barbosa, L. Mignet, and P. Veltri. Studying the XML
Web: Gathering Statistics from an XML Sample. World
Wide Web, 8(4):413–438, 2005.

[7] M. Benedikt, W. Fan, and F. Geerts. XPath Satisfiability
in the Presence of DTDs. In PODS, pages 25–36, 2005.

[8] P. A. Bernstein. Applying Model Management to Classical
Meta Data Problems. In CIDR, 2003.

[9] G. Bex, W. Gelade, F. Neven, and S. Vansummeren.
Learning Deterministic Regular Expressions for the
Inference of Schemas from XML Data, 2007.
http://www.uhasselt.be/~lucg5855/papers/infkore.pdf

[10] G. J. Bex, F. Neven, T. Schwentick, and K. Tuyls. Inference
of Concise DTDs from XML Data. In VLDB, 2006.

[11] G. J. Bex, F. Neven, and J. Van den Bussche. DTDs versus
XML Schema: a Practical Study. In WebDB, pages 79–84,
2004.

[12] G. J. Bex, F. Neven, and S. Vansummeren. Inferring XML
Schema Definitions from XML data. In VLDB, pages
998–1009, 2007.

[13] A. Brāzma. Efficient Identification of Regular Expressions
from Representative Examples. In COLT, pages 236–242.
ACM Press, 1993.

[14] A. Brüggeman-Klein. Regular Expressions into Finite
Automata. Theor. Comput. Sci., 120(2):197–213, 1993.

[15] A. Brüggemann-Klein and D. Wood. One-unambiguous
Regular Languages. Information and computation,
140(2):229–253, 1998.

[16] P. Buneman, S. B. Davidson, M. F. Fernandez, and
D. Suciu. Adding Structure to Unstructured Data. In
ICDT, pages 336–350, 1997.

[17] P. Caron and D. Ziadi. Characterization of Glushkov
Automata. Theo. Comp. Sc., 233(1–2):75–90, 2000.

[18] D. Che, K. Aberer, and M. T. Özsu. Query Optimization in
XML Structured-Document Databases. VLDB J.,
15(3):263–289, 2006.

[19] B. Chidlovskii. Schema Extraction from XML: a
Grammatical Inference Approach. In KRDB, 2001.

[20] J. Clark. Trang: Multi-format Schema Converter.
http://www.thaiopensource.com/relaxng/trang.html.

[21] J. Clark and M. Murata. RELAX NG Specification.
OASIS, December 2001.

[22] R. Cover. The Cover Pages. http://xml.coverpages.org/,
2003.

[23] J. F. Fang Du, Sihem Amer-Yahia. ShreX: Managing XML
Documents in Relational Databases. In VLDB, pages
1297–1300, 2004.

[24] H. Fernau. Algorithms for Learning Regular Expressions. In
ALT, pages 297–311, 2005.

[25] R. Finn, J. Mistry, B. Schuster-Böckler, S. Griffiths-Jones,
et al. Pfam: Clans, Web Tools and Services. Nucleic Acids
Research, 34:D247–D251, 2006.

[26] D. Florescu. Managing Semi-structured Data. ACM Queue,
3(8), October 2005.

[27] J.-M. François. Jahmm. http://www.run.montefiore.ulg.
ac.be/~francois/software/jahmm/, April 2006.

[28] J. Freire, J. R. Haritsa, M. Ramanath, P. Roy, and
J. Siméon. StatiX: Making XML Count. In SIGMOD,
pages 181–191, 2002.

[29] D. Freitag and A. McCallum. Information Extraction with
HMM Structures Learned by Stochastic Optimization. In
AAAI/IAAI, pages 584–589, 2000.

[30] P. Garcia and E. Vidal. Inference of k-Testable Languages
in the Strict Sense and Application to Syntactic Pattern
Recognition. IEEE Trans. Pattern Anal. Mach. Intell.,
12(9):920–925, 1990.

[31] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and
K. Shim. XTRACT: Learning Document Type Descriptors
from XML Document Collections. Data Mining and
Knowledge Discovery, 7:23–56, 2003.

[32] E. Gold. Language Identification in the Limit. Information
and Control, 10(5):447–474, May 1967.

[33] R. Goldman and J. Widom. DataGuides: Enabling Query
Formulation and Optimization in Semistructured
Databases. In VLDB, pages 436–445, 1997.

[34] J. Hegewald, F. Naumann, and M. Weis. XStruct: Efficient
Schema Extraction from Multiple and Large XML
Documents. In ICDE Workshops, page 81, 2006.

[35] J. Hopcroft and J. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley,
Reading, MA, 2007.

[36] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier.
Schema-based Scheduling of Event Processors and Buffer
Minimization for Queries on Structured Data Streams. In
VLDB, pages 228–239, 2004.

[37] I. Manolescu, D. Florescu, and D. Kossmann. Answering
XML Queries on Heterogeneous Data Sources. In VLDB,
pages 241–250, 2001.

[38] W. Martens, F. Neven, T. Schwentick, and G. J. Bex.
Expressiveness and Complexity of XML Schema. ACM
TODS, 31(3), 2006.

[39] L. Mignet, D. Barbosa, and P. Veltri. The XML Web: A
First Study. In WWW, pages 500–510, 2003.

[40] M. Murata, D. Lee, M. Mani, and K. Kawaguchi.
Taxonomy of xml schema languages using formal language
theory. ACM Trans. Internet Techn., 5(4):660–704, 2005.

[41] S. Nestorov, S. Abiteboul, and R. Motwani. Extracting
Schema from Semistructured Data. In ICDM, pages
295–306. 1998.

[42] F. Neven and T. Schwentick. On the Complexity of XPath
Containment in the Presence of Disjunction, DTDs, and
Variables. Logical Methods in Computer Science, 2(3),
2006.

[43] L. Pitt. Inductive Inference, DFAs, and Computational
Complexity. In AII, pages 18–44, 1989.

[44] D. Quass, J. Widom, R. Goldman, et al. LORE: a
Lightweight Object REpository for Semistructured Data. In
SIGMOD, page 549, 1996.

[45] L. Rabiner. A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition. Proc. IEEE,
77(2):257–286, 1989.

[46] E. Rahm and P. A. Bernstein. A Survey of Approaches to
Automatic Schema Matching. VLDB J., 10(4):334–350,
2001.

[47] A. Sahuguet. Everything You Ever Wanted to Know about
DTDs, but Were Afraid to Ask. In WebDB, 2000.

[48] Y. Sakakibara. Recent Advances of Grammatical Inference.
Theor. Comput. Sci., 185(1):15–45, 1997.

[49] J. Sankey and R. K. Wong. Structural Inference for
Semistructured Data. In CIKM, pages 159–166. 2001.

[50] H. Thompson, D. Beech, M. Maloney, and N. Mendelsohn.
XML Schema Part 1: Structures. W3C, May 2001.

[51] M. Young-Lai and F. W. Tompa. Stochastic Grammatical
Inference of Text Database Structure. Machine Learning,
40(2):111–137, 2000.

834

WWW 2008 / Refereed Track: XML and Web Data - XML I April 21-25, 2008 · Beijing, China

