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ABSTRACT
Because of the high volume and unpredictable arrival rate, stream
processing systems may not always be able to keep up with the
input data streams— resulting in buffer overflow and uncontrolled
loss of data. Load shedding, the prevalent strategy for solving this
overflow problem, has so far only been considered for relational
stream processing, but not for XML. Shedding applied to XML
stream processing brings new opportunities and challenges due to
complex nested nature of XML structures. In this paper, we tackle
this unsolved XML shedding problem using a three-pronged ap-
proach. First, we develop an XQuery preference model that enables
users to specify the relative importance of preserving different sub-
patterns in the XML result structure. This transforms shedding into
the problem of rewriting the user query into shed queries that return
approximate query answers with utility as measured by the given
user preference model. Second, we develop a cost model to com-
pare the performance of alternate shed queries. Third, we develop
two shedding algorithms, OptShed and FastShed. OptShed guaran-
tees to find an optimal solution however at the cost of exponential
complexity. FastShed, as confirmed by our experiments, achieves
a close-to-optimal result in a wide range of test cases. Finally we
describe the in-automaton shedding mechanism for XQuery stream
engines. The experiments show that our proposed utility-driven
shedding solutions consistently achieve higher utility results com-
pared to the existing relational shedding techniques.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems-query processing

General Terms
Algorithms, Design

Keywords
XML streams, XML query processing, load shedding, preference
model

1. INTRODUCTION
XML has been widely accepted as the standard data representa-

tion for information exchange on the web. XML stream systems
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have particularly attracted researcher’s interest recently [5, 8, 14,
21, 16, 22] because of the wide range of potential applications such
as online auction, publish/subscribe systems and e-commerce ap-
plications. Different from relational stream systems, XML stream
processing experiences new challenges: 1) The incoming data is
entering the system at the granularity of a continuous stream of to-
kens, instead of a tree structured XML element nodes. This means
the engine has to extract relevant tokens to form XML elements. 2)
We need to conduct dissection, restructuring, and assembly of com-
plex nested XML elements specified by query expressions, such as
XQuery.

For most monitoring applications, immediate online results often
are required, yet system resources tend to be limited given high ar-
rival rate data streams. Therefore, sufficient memory resources may
not be available to hold all incoming data and the CPU processing
capacity may not be adequate to always handle the stream work-
load. A common technique to avoid these limitations is load shed-
ding, which drops some data from the input to reduce the memory
and CPU requirements of workload. The current state-of-the-art
in load shedding for relational stream systems can be categorized
into two main approaches [10, 2, 9, 7]. One is random load shed-
ding [10], where a certain percentage of randomly selected tuples
is discarded. The other approach is semantic load shedding which
assigns priorities to tuples based on their utility to the output appli-
cation and then sheds those with low priority first.

No work so far discussed load shedding on XML streams where
the query results are composed of possibly complex nested struc-
tures. Elements, extracted from different positions of XML tree
structure, may vary in their importance (utility). Further, these
subelements may consume rather different amount of buffer space
and require different CPU resources for their extraction, buffering,
filtering and assembly. This provides a new opportunity for selec-
tively shedding XML subelements to achieve high processing speed.
In this paper, we address shedding in the XML stream context and
incorporate the “structural utility” for XML elements into the shed-
ding decision.

Consider an online-store, customers may have periods of heavy
usage during promotions time or on holidays. The online store may
receive huge numbers of order. When the processing capacity is
not sufficient to keep up with data arrival rate, the data will ac-
cumulate in the buffer resulting in an overflow. In this case, we
have to either drop some data or improve the processing speed.
We consider the topmost “transaction” element a basic unit based
on which we can generate results. However, dropping complete
“transaction” elements means that we may lose important informa-
tion. In this scenario, dropping unimportant but resource-intensive
subelements may be more meaningful to applications compared to
the complete-tuple-granularity shedding. We call this type of “el-
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ement” granularity drop structural shedding since it changes the
structure of query results.

Q1: FOR $a in stream("transactions")/list/transaction
WHERE $a/order/price > 100
RETURN $a//name, $a/contact/tel, $a/contact/email,

$a/contact/addr, $a/order/items

survey
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name

transaction(0, ∞)

order
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items cardNo

billing
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id
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1 * *
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Figure 1: The schema definition for Q1

Let us consider the query Q1 issued above. This query returns
the item list and contact information including telephone, email and
address when customers spend more than 100 dollars. To process
as many transaction elements as possible, consumers of the query
result may prefer to selectively obtain partial yet important con-
tent as result while dropping less important subelements in each
transaction tuple. In this case we may choose to drop “addr” infor-
mation for two reasons: 1) “addr” element is much more complex
than “email”, as shown in the schema in Figure 1. This means we
process more tokens for each single “addr” element; 2) “addr” ele-
ment may be “optional” to output consumers because “email” may
be the more likely means of contacting customers. By dropping
the “addr” element, several savings arise. First, we do not need to
extract “addr” elements from the input tokens. In this case, we by-
pass the processing of tokens from “<addr>” to “</addr>”. Sec-
ond, we no longer need to buffer “addr” element during processing.
Thus the buffering costs for “addr” element are saved. Note here
this shedding can be achieved by removing the “addr” element from
the initial query. We call the new reduced query shed query.

There are many options to drop subelements from a given query.
However, different shed queries vary in their importance and their
processing costs. Hence the correct choice of appropriate shed
queries raises many challenges. First, what model do we employ to
specify the importance of each subelement? Second, after gener-
ating different shed queries, how can we estimate the cost of these
shed queries at runtime? Third, which of the potential shed queries
should be chosen to obtain maximum output utility? Our solution
tackles these challenges using a three-pronged strategy. One, we
propose a preference model for XQuery to enable output consumers
to specify the relative utility (a.k.a preference) of preserving differ-
ent sub-patterns in the query. Two, we develop a cost model to
estimate the processing cost for the candidate shed queries. Three,
we transform the shed query decision problem into an optimization
problem. The main goal of our shedding technique is to maximize
output utility given the stream input rate and limited computational
resources. Our contributions are summarized as below:

1. In this paper, we define a structure-based preference model
which uniquely exploits the relative importance of different
sub-patterns in XML query results.

2. We formulate the shedding problem as an optimization prob-
lem to find the shed queries that maximize the output utility
based on our structure-based preference model and the esti-
mated cost derived from our cost model for XML streams.

3. To solve the shedding problem, we develop two classes of
algorithms, OptShed and FastShed. OptShed guarantees to
find an optimal solution however at the cost of an exponential
complexity. FastShed achieves a close-to-optimal result in a
wide range of cases.

4. We propose a simple yet elegant in-automaton shedding mech-
anism by suspending the appropriate states in the automaton-
based execution engine, in order to drop data early (and thus
efficiently).

5. We provide a thorough experimental evaluation that demon-
strates that our approach maximizes the utility while keeping
CPU costs under the system capacity.

The remainder of this paper is organized as follows: In Section 2
we describe the query pattern trees and how to generate different
shed queries for a given query. Section 3 describes the cost model
for XML stream processing. In Section 4, we define how prefer-
ences can be specified for different query patterns and how to com-
pute the preferences for queries. In Section 5, we formulate the
shedding problem and provide two algorithms. Implementation of
our in-automaton shedding strategy is described in Section 6 while
the experimental results are shown in Section 7. Section 8 discusses
the related work and conclusions are given in Section 9.

2. PRELIMINARIES

2.1 Query Pattern Tree
We support the core subset of XQuery in the form of “FOR

WHERE RETURN” expressions (referred to as FWR) where the
“RETURN” clause can contain further FWR expressions; and the
“WHERE” clause contains conjunctive selection predicates, each
predicate being an operation between a variable and a constant. We
assume the queries have been normalized as in [6].

The query pattern tree for query Q1 is given in Figure 2. In
Figure 2, each navigation step in an XPath is mapped to a tree
node. We use single line edges to denote the parent-children rela-
tionship or attributes and double line edges to denote the ancestor-
descendant relationship.

We define the following terms in an XQuery. First, a context
variable corresponds to an XPath in the “FOR” clause, e.g., $a
in Figure 2. Context variables must evaluate to a non-empty set
of bindings for the FWR expression to return any result. Second, a
pattern that corresponds to an XPath in the “RETURN” clause, e.g.,
$a/contact/tel or $a//name, is called return pattern (“r” pattern).
Return patterns are optional, meaning even if $a/contact/tel evalu-
ates to be empty, other elements will still be constructed. Third,
a selection pattern (“s” pattern) corresponds to an XPath in the
“WHERE” clause, i.e. it has associated predicates. For instance,
the XPath, $a/order/price in Figure 2 is a selection pattern. The
context variable, “r” and “s” patterns for query Q1 are annotated on
their destination nodes in Figure 2. We call the destination nodes
of the return and selection patterns “r” and “s” nodes respectively.

2.2 Generating Shed Queries
We now investigate how to generate shed queries based on an

original query. We distinguish between two terms, sub query and
shed query. Sub queries are generated by removing one or multiple
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Figure 2: Query Pattern Tree for Q1

nodes from the initial query tree. A shed query is a valid sub query,
and it obeys the following rules:

1. A shed query always has the same root as the initial query.

2. The leaf nodes of a shed query have to be either “r” or “s”
nodes.
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Figure 3: Shed Query Trees

For instance, Figure 3(a) is not valid because this tree does not
need to keep the “contact” element because all children of the “con-
tact” element are removed and the XPath $a/contact is neither an
“r” nor an “s” pattern. Figures 3(b) and (c) show two valid sub
queries for query Q1.

Assume B denotes the number of all “r” and “s” patterns for a
given query tree. When the query tree is a completely flat tree of
height 1 and width B, the maximum number of shed queries is 2B .
When the query tree is deep and has only one node on each level,
at most B shed queries exist. Thus the number of shed queries for
a query varies between B and 2B .

3. COST MODEL OF XML STREAM
SYSTEMS

3.1 Automaton Processing Model
As is known, automata are widely used for pattern retrieval over

XML token streams [8, 21, 15]. The relevant tokens are assem-
bled into elements to be further filtered or returned as final out-
put elements. The formed elements are then passed up to perform
structural join and filtering. An algebra plan located on top of the
automaton for query Q1 is shown in Figure 4. An Extract operator
is responsible for collecting tokens for some pattern and compos-
ing them into XML elements. For instance, Extract$a//name
collects tokens to form “name” elements. Structural join operator
is responsible for combining the elements from its branch operators
based on structural relationship and form a transaction tuple. Ob-
serve that the context variable $a in the “FOR” clause is mapped to
a structural join. In addition we perform selection on $a/order/price
to judge whether the “price” is greater than 100. Thus we have the

Notation Explanation
NPi Number of elements matching Pi for a topmost element
nstart Total number of start or end tags for a topmost element
SPi Number of tokens contained in an element matching Pi

A Set of states in automaton
APi Set of states of pattern Pi and its dependent states
nactive(q) the number of times that stack top contains a state q when a

start tag arrives
Ctransit cost of processing a start tag of an element in the query
Cnull cost of processing a start tag of an element not in the query
Cbacktrack cost of popping off states at the stack top
Cbuf cost of buffering a token

Table 1: Notations Used in Cost Model

following query processing tasks in XML stream systems: 1. Using
automaton to locate tokens. 2. Extracting tokens. 3. Manipulating
buffered data, which includes structural join and selection.

Extract 
$a/contact/tel

StructuralJoin $a

Extract 
$a/contact/email

Extract 
$a//name

Extract 
$a/contact/addr

Extract 
$a/order/price

Extract 
$a/order/items

Sel
$a/order/price

Figure 4: An Example Plan

3.2 CPU Cost Model for a Query
We now design a cost model to estimate the processing costs of

shed queries for XML streams. This cost model is adapted from
the cost model proposed in [25]. In XML streams we measure the
query cost for a complete topmost element since it is the basic unit
based on which we generate query results. We call the processing
time of handling such a topmost element the Unit Processing Cost
(UPC). For instance, the cost of query Q1 thus is the unit processing
cost of handling one “transaction” element.

We divide the UPC for XQuery into three parts: Unit Locating
Cost (ULC) that measures the processing time spent on automa-
ton retrieval, Unit Buffering Cost (UBC) spent on pattern buffering
and Unit Manipulation Cost (UMC) spent on algebra operations in-
cluding selection and structural join. UPC is equal to the sum of the
cost of these three parts. When we drop either “r” patterns or “s”
patterns from the query, we estimate the cost change for these three
parts. Note that for a new shed query, its processing cost might not
be reduced when dropping “s” patterns. Although it appears that
the evaluation cost of the selection pattern is saved, it might need
to construct more nodes. In this case the UPC might even be in-
creased if the selectivity of the “s” pattern is not 1. Due to space
limitations, we only discuss ULC and UBC here. UMC and the
discussion about the selectivity of “s” patterns can be seen in [27].

Unit Locating Cost (ULC). In locating tokens, when an incoming
token is a start tag, we need to check whether this start tag will
lead to any transitions. If it is transitioned to a new state, tasks
to be undertaken may include setting a flag to henceforth buffer
tokens or to record the start of a pattern. We call such a transition
cost Ctransit. The start tokens of all elements in the query tree
will cause such a transition. When there are no states to transition
to, an empty state is instead pushed onto the stack top. All start
tokens of patterns that do not appear in the query tree will lead to
such an empty state transition. The cost associated with this case is
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Cnull. For instance, when< id > is encountered, an empty state is
pushed onto the stack top. When the incoming token is an end tag,
the automaton pops off the states at the top of the stack. We refer
to such popping off cost as Cbacktrack. The popping costs for all
end tags are the same. The relevant notations are given in Table 1.

<transaction> <id>

s0 s0 s0 s0 s0 s0 s0

<stream> </id> <name>1

s1 s1 s1
s2 s2

Mike

φ φ

s1
s2

s1
s2

s1
s2

s3,s4

s0
s1
s2

s0
list transaction

s1 s2 s5 s7

s6

name

tel

email

s3

contact

order ……

s3,s4

λ

s4
*

Figure 5: Snapshots of Automaton Stack

We split ULC into two parts, one considers the cost of locating
the start and end tags for elements in the query tree, and the other
considers the cost for locating the start and end tags for other ele-
ments. The first part can be measured by the invocation times for
each state and the transition cost for a token as below:X

q∈A
nactive(q)(Ctransit + Cbacktrack) (1)

P
q∈A nactive(q) denotes the number of start tags for which non-

empty transition exists in automaton. The number of other start
tags, namely for elements which are not in the query tree, can be
written as nstart −P

q∈A nactive(q). Thus the second part of the
transition cost is as below:

(nstart −
X

q∈A
nactive(q))(Cnull + Cbacktrack) (2)

We now look at how to estimate the locating cost we can save by
switching from the initial query Q to a shed query. Assume the shed
query Qs is generated by removing pattern Pi from Q. This means
that the pattern Pi and all its descendant patterns will be dropped.
Then in the automaton for shed query, the states corresponding to
Pi and its descendant patterns will be cut from the initial automa-
ton of Q. Let us call the set of states corresponding to Pi and its
dependent states APi . The locating cost for pattern Pi in the initial
automaton can be represented as:

X
q∈APi

nactive(q)(Ctransit + Cbacktrack) (3)

However, in the shed query, since these states are never reached,
they are now treated as elements that are not in the query. Their
locating cost is thus changed to:

X
q∈Api

nactive(q)(Cnull + Cbacktrack) (4)

Thus Eq(3)- Eq(4) indicate the savings in locating costs gained by
switching from the initial query to this shed query Qs.

Unit Buffering Cost (UBC) In our query engine, we only store
those tokens that are required for the further processing of the query.
As we mentioned, the Extract operators are responsible for buffer-
ing those tokens. Thus each “r” and “s” pattern has a corresponding
Extract operator. Such buffering cost for a topmost element is de-
fined as UBC (Unit Buffering Cost). Extract operators are invoked

when the corresponding states are reached in the automaton. For
example, in Figure 5, state s4 would invoke an Extract operator to
store the whole “name” element. In addition we assume here the
buffering cost is the same for all individual tokens.

p1 $ar

p2 p3 p4
r

p1 $ar

p2

p3r

p4

r

r

r

r

p1

p2 p3 p4
r rr

(a) (b) (c)

$a

Figure 6: Buffer Sharing Examples

Our buffer manager uses pointers to refer to elements. Thus we
do not store the same token more than once. Three query examples
are shown in Figure 6. In Figures 6(a) and 6(b), the parent pattern
and its children patterns overlap. Since both the parent and the chil-
dren are to be returned, we only need to store the parent pattern p1
and set a reference for its children p2, p3 and p4 pointing to p1. In
this case, the buffering cost is equal to the buffering cost of the par-
ent pattern p1. However, in Figure 6(c), since the parent is not an
“r” pattern, only its children are to be returned. The buffering cost
is equal to the buffering cost of all the children. Hence, for a given
query, we need to find all non-overlapping topmost patterns which
are either “r” patterns or “s” patterns, called henceforth the storing
pattern set. The storing pattern set can be obtained by traversing
the query tree in a breadth-first manner [27].

Assume the storing pattern set for our query Q is denoted as R.
UBC can be written as:

UBC(Q) =
X

p∈R
NpSpCbuf (5)

Runtime Statistics Collection. We collect the statistics needed
for the costing using the estimation parameters described above.
We piggyback statistics gathering as part of query execution. For
instance, we attach counters to automaton states to calculate NPi ,
nstart and nactive(q). We collect sPi in Extract operators. We
then use these statistics to estimate the cost of shed queries using
the formulas given above. Note that some cost parameters in Table
1 such as Ctransit, Cnull and Cbuf are constants. We do not need
to measure them during the query execution.

4. PREFERENCE MODEL FOR QUERIES
Value-based Preferences v.s. Structure-based Preferences. In
many practical applications, some results are considered more im-
portant than other output tuples. For instance, the user might be
interested in red cars when buying new cars. In this case the utility
of the tuple whose color attribute is equal to “red” is higher than
those of the tuples whose colors are not “red”. Aurora first consid-
ered such value-based preference as part of the QoS requirement
and proposed semantic load shedding techniques [10] to maximize
output utility. In this case, semantic load shedding is achieved by
adopting a value-based filter. We can easily incorporate such value-
based preference and their filter-based shedding approach in the
XML stream scenario. However, this is not our main interest in this
XML work. Instead, we are interested in exploring the structure-
based preference in XML stream processing. In the XML stream
scenario, the input stream as well as the output results are com-
posed of different XML subelements instead of just flat attributes,
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and hence more complex than relational tuples. The importance of
different elements in an XML tree may vary due to their semantics.
As illustrated via an example in Section 1, the “email” element is
considered more important than the “addr” element as “email” is a
faster and more convenient means to notify customers.

Specifying Preferences in Query. We distinguish between two
options to specify preferences, one is to specify preferences in the
data schema and then derive the preferences for the patterns in the
query, and the other is to specify preferences directly in the query.
The former case is somewhat rigid when the same data is consumed
by different applications. For instance, given store sale data, the
data mining expert would think the customers’ information includ-
ing gender, age, education and their shopping lists are important
since they want to learn about the correlation between customers’
background with their shopping interests. However, the stock man-
ager would be interested in the products and their sale quantity.
In this case, users may assign preferences rather differently to the
same subelements. Thus having a single fixed preference on data
schema is an unnecessary restriction. For this reason, we instead
propose that users specify preferences to the patterns in the query.

To support this, we need a metric to measure the importance of
each pattern for a given query. We define a quantitative preference
model that represents preferences of preserving different elements
in the query result.The preferences can be specified by the user
who issues the query or the consumer of the query result. By bind-
ing different patterns with their corresponding preferences, shed
queries vary in their perceived utilities to the user. In our prefer-
ence model, we do not distinguish utility assignment of “r” and “s”
patterns. Instead, users decide their utilities. However, the differ-
ences among processing costs for “r” and “s” patterns are handled
by the cost model.

We support two alternative types of preference specification on
query patterns. One uses prioritized preference [18] to qualitatively
express the relative ranking among different patterns, and the other
uses a quantitative approach [13, 12] that directly scores the impor-
tance of the patterns. Users are free to choose either the Numeri-
cal Preference Model (NPM) or the Prioritized Preference Model
(PPM) to represent their preferences on query patterns. For prefer-
ences specified by PPM, we translate the prioritized preferences to
numerical forms using a score formula. In both cases we use the
quantitative metric to compute the utilities of shed queries.

4.1 Numerical Preference Model (NPM)
If a user chooses to specify preferences using NPM, he or she

can assign customized utilities (preferences) for different patterns
in the query in a numerical form. Users only need to specify the
utility values for the “r” and “s” patterns. The utility of pattern Pi

where Pi is a “r” or “s” pattern is represented below:

ν(Pj) �→ [0, 1]

Here ν(Pj) is a value between [0,1]. An example of utility as-
signment for query Q1 is shown in Figure 7 (destination node of
each pattern is annotated by its utility value).

4.2 Prioritized Preference Model (PPM)
If users choose to use the prioritized preferences, they describe

the relationship among patterns. This means that given a query, the
user declares the relative ordering of “r” and “s” patterns in term of
their importance. Note that we do not require users to specify the
preference ordering for all the patterns since users may only specify
the ordering for some patterns. An example prioritized preference
for query Q1 is:

transaction $a

name order

itemsprice

contact
r

telr email
r rs

addr
r

0.2

0.1 0.1 0.05 0.25 0.2

Figure 7: Q1 Query Tree with Preferences

$a//name � $a/order/price � $a/contact/tel �
$a/order/items � $a/contact/email � $a/contact/addr

For the above qualitative preference representations, we translate
them to quantitative preferences. A score assignment strategy is
applied based on the given prioritized preference ranking, where
we assign scores using the following formula:

ν(Pattern Ranking k) = 1/2k

For instance, the utility for pattern $a//name is equal to 1
2

and
the utility for $a/contact/tel is equal to 1

23 . The reason why the
preference of pattern ranking k is translated to 1

2k is explained in
Section 4.3. When only the ordering of some patterns is specified,
the scoring scheme below will also generate the preferences for
those patterns that are not ranked.

4.3 Scoring Scheme for Patterns without
Preferences

We do not require users to specify the preferences for all the
“r” and “s” patterns. In this case we obtain the utilities for those
patterns using the following properties:

1. Precedent parent: A parent pattern is more important than
its descendant patterns. This is because parent return nodes
always contain all the descendant “r” and “s” patterns. For
a non-leaf pattern that has not been assigned preferences, its
utility is defined as the sum of scores of all its children.

2. Equivalent leaf : We assume the leaf nodes without assigned
preferences are equally important. Their preference values
are thus the same. They are less important than the patterns
who have been assigned preferences. Let w denote the num-
ber of patterns that are not assigned preferences, their utilities
are all assigned to

min(ν(Pj)) ∗ 1/2w ,

wheremin(ν(Pj)) is the minimum value among all assigned
preferences.

Now we observe that the translation formula for prioritized pref-
erence model can guarantee the precedent parent property if the
user specifies the pattern is more important than any of its descen-
dants.

4.4 Computing Utilities for Queries
After the quantitative preferences for all the patterns in the query

are determined, we can calculate the utility of the original query
and the shed queries derived from the original query. If a pattern
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appears in a query tree of a shed query, that means it will be con-
sidered into the query and its utility is obtained. We use utility of a
query to indicate the amount of utility users gain by executing this
particular query Q on a single topmost element, in other word, how
much utility is obtained by including all the patterns in this shed
query. It can be calculated as

ν(Q) =
X

Pj∈Q

ν(Pj) .

Where Pj is either a “r” pattern or “s” pattern. For instance, the
utility of Q1 is: 0.2+0.1+0.1+0.25+0.2+0.05= 0.9.

Particularly, we introduce the empty query, a special shed query
which actually drops the whole topmost element. For the empty
query Q0, we define its utility ν(Q0) = 0 since it does not con-
tribute to any output.

After calculating the preference for a given query, we perform
a simple normalization process. Assume the preference for a shed
query is ν(Qi) and the preference for the original query is ν(Q).
The preferences for each shed query is normalized to ν(Qi)/ν(Q)
and the preference for the original query is 1. After the normaliza-
tion, we can observe that the normalized preferences of the shed
queries including original query and empty query would fall into
[0, 1]. Note that in the later sections, we use normalized utility
values for the shed queries.

[11] proposed an extension of XPath which incorporates value-
based preferences into XPath. Similarly we can easily extend the
XQuery syntax to integrate our structure-based preferences into an
XQuery expression as below:

Q1: FOR $a in stream("transactions")/list/transaction
WHERE $a/order/price > 100
RETURN $a//name, $a/contact/tel, $a/contact/email,

$a/contact/addr, $a/order/items
PREF v(name)= 0.2, v(tel)= 0.1, v(email)=0.1...
| PREF name > price > tel > items...

5. SHEDDING ALGORITHMS

5.1 Decide When to Shed
The problem of deciding when the system needs to shed input

data has been discussed in other works [10]. This is not specific
to XML stream systems. In our system we adopt the following
approach for simplicity. We assume a fixed memory to buffer the
incoming XML stream data. As soon as all tokens in an XML el-
ement have been processed, we clean those tokens from the buffer.
We assume a threshold on the memory buffer that allows us to en-
dure periodic spikes of the input without causing any overflow.
During execution, we monitor the current memory buffer. When
buffer occupancy exceeds the threshold, we trigger the shedding
algorithm.

5.2 Formulation of Shedding Problem
Let us assume that the shed query set is {Q0, Q1, ..Qn} where

Q0 is the empty query and Q1 is the original query. Here empty
query just drops all the tokens of a topmost element. The reason
why we introduce empty query Q0 into shed query set is for the
convenience of the formalization of the shedding problem, so that
all the input elements are consumed by shed queries. Since this
empty query does not generate any output, we assume the utility of
empty query Q0 denoted by ν0 and the UPC of Q0 denoted by C0

are both zero. The goal of the shedding problem is to find which
shed queries will be chosen to run in order to achieve maximum
utility. We have the following inputs to our shedding problem: 1.
data arrival rate λ in the unit of topmost elements per time unit; 2.

utilities of candidates in the query set {ν0, ν1, ..νn} ); 3. processing
costs (in time units) of queries in the set {C0, C1, ..Cn}. 4. the
number of time units for shedding query to execute, C, denoting
the available CPU resources.

We aim to find a set of shed queries which satisfies the two con-
ditions: (1) Consume all the input elements in C time units. Here
C is an integer to measure CPU resources.(2) Maximize the out-
put utility. Note that the shed queries here include empty query,
original query and shed queries we derived from original query.
We could consider variation of the problem by imposing additional
constraints. If we limit the number of qualified queries in the result
set to only one, we have to check all the shed queries to see whether
any shed query can consume all the input elements. If there exists
such shed queries, we would pick the query that yields the highest
utility. However, it is possible that all the shed queries except the
empty query are too slow to be able to consume all the inputs. In
this case, the empty query is the only option since it can consume
all the inputs. Unfortunately, the output utility would be zero since
we drop everything. Thus restricting to one query is not sufficient
to achieve optimal results.

Another option is to restrict the number of shed queries to two.
As mentioned before, there might not exist such a shed query from
the query set whose processing speed is as fast as input arrival rate
except empty query. It implies that if picking two queries from
the shed queries and none of them is the empty query, we cannot
handle all input data. Thus picking the empty query is necessary in
this case. Given that the empty query cost is zero, we can formulate
this problem below:

Given the constraint: xi ∗Ci <= C, where 1 ≤ i ≤ n and xi

indicates the number of dropped topmost elements for query Qi.

We want to maximize output utility xi ∗ vi. The number of el-
ements to drop (corresponding to empty query) is thus equal to
λ−xi. Note that the current state-of-the-art shedding techniques [3,
10] can be regarded as a special case for allowing two shed queries,
as they typically pick the original query and empty query.

However, allowing only two shed queries might not be optimal.
Consider the following example. The utility and cost of three shed
queries Q1, Q2 and Q3 are shown below.

{(1, 55ms), (0.9, 45ms), (0.6, 30ms)}

Assume the available CPU resource is 80ms and 3 topmost ele-
ments arrive during that time period. If we only allow two different
shed queries, we have to let 2 elements execute query Q3 and 1
element execute empty query. The output utility is 0.6*2+0= 1.2.
However, note that if we let 1 element execute query Q2, 1 element
execute Q3 and 1 element execute empty query, the output utility
is even higher, 0.9+0.6+0=1.5. We therefore do not limit the num-
ber of different shed queries in the result set. Our goal is to find a
coefficient vector {x0, x1, ..xn} for the shed query set, which max-
imizes the utility of the total processed elements while keeping the
processing cost below the CPU processing capability. Here xi de-
notes the number of topmost elements assigned to query Qi. The
problem is formalized below.

1. The total number of XML elements processed (including
those processed by empty query) can be calculated as:

X(s) =
nX

i=0

xi (6)

2. Total execution cost by consuming all the input elements can
be represented as
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C(s) =
nX

i=0

xi ∗ Ci (7)

Using the above equations, the shed problem is to maximize the
total data utility:

nX
i=0

xiνi (8)

Subject to

X(s) = C ∗ λ
and C(s) ≤ C (9)

Note that the cost of all shed queries is measured in time units,
thus they are all non-negative integers. We thus conclude that this
problem is an instance of the knapsack problem [17]. We propose
two solutions for this problem as described below.

5.3 OptShed Approach
OptShed uses a dynamic programming solution [23]. To state

our approach, we construct a matrix of sub-problems:

ψ0(0) ψ0(1) ... ψ0(C)

ψ1(0) ψ1(1) ... ψ1(C)

... ...

ψn(0) ψn(1) ... ψn(C)

Here ψj(c̃) is a sub-problem which uses queries from Q0 to Qj

and its cost is less than or equal to c̃.
Clearly, ψn(C) gives the optimal solution to the original prob-

lem we want to solve, where C denotes the total available CPU
resources.

Now, we define φj(c̃) to be the maximum utility of sub-problem
ψj(c̃). This is presented recursively as follows:

φj(0) = 0 , 0 ≤ j ≤ n

φj(c̃) = max
n
φj−1(c̃− kCj) + kνj | 0 ≤ k ≤ � c̃

Cj
�
o

From the matrix of sub-problems, we can see that we need to
repeat the calculation of φ(c̃) nC times to get the final result, and
each calculation can be finished using a max-value searching al-
gorithm, whose time cost is O(log2 C) [23]. Thus the total time
complexity is O(nC log2 C).

5.4 FastShed Approach
Since the time complexity of OptShed is prohibitively expen-

sive in practice, we want to find a simple but effective way to
solve this problem. We thus propose an efficient greedy algorithm,
called FastShed. Observe that load shedding will be invoked when
the arrival rate is greater than the processing speed of the origi-
nal query, meaning λ ≥ 1

C1
. When the arrival rate is greater than

the processing speed of all the shed queries, we use a ratio-sorting
approach. We calculate the ratios of utility over processing cost,
νi/Ci, for each candidate query Qi. We sort all queries in terms
of these ratios. Assume that the ratios of Qi1 , Qi2 ,...,Qin are in
non-increasing order. We assign Qi1 to as many as possible in-
put XML elements as long as it does not exceed our given CPU
processing capability, and then assign Qi2 to as many as possible
input XML elements according to the remaining CPU processing
capability, and so on.

However, if the arrival rate cannot satisfy the condition that it is
greater than the processing speeds of all shed queries, i.e., there ex-
ists at least one shed query whose processing speed is greater than

the arrival rate, the utility over cost ratio sorting approach might
be sub-optimal. Let us examine the following example. Assume
the arrival rate is 30 topmost elements/s which is equal to 0.03 ele-
ments/ms. Assume the utilities and costs of four shed queries Q1,
Q2, Q3 and Q4 are shown below:

{(1, 40ms), (0.9, 25ms), (0.8, 20ms), (0.7, 50ms)}

Assume the CPU resources are limited to 1000ms. If we rank
these queries based on their utility by cost ratio, the decreasing
order is Q3, Q2, Q1, Q4. However, if we choose query Q3 ,the
utility it can reach is actually equal to 0.8*30 =24 instead of 0.8
*1000/20 = 40. This is because the number of elements on which
we run a shed query cannot exceed the amount of input data. Thus
for the shed query whose processing speed is greater than arrival
rate, the output utility is limited to its utility * arrival rate. In this
case, the output utilities for query Q1, Q2, Q3 and Q4 are 25, 27,
24 and 14 respectively. Thus query Q2 is the shed query we should
choose since it yields highest utility.

We account for this case by modifying the ratio sorting approach
as follows. We define γi = νi ∗ min{λ, 1

Ci
}, and the sorting is

done based on these γis.

Algorithm 1 FastShed

Input: λ, {ν0, ν1, ..νn}, {C0, C1, ..Cn}, C
Output: {x0, x1, ..xn}
void FastShed()
γi = νi ∗min{λ, 1

Ci
} (1 ≤ i ≤ n)

Sort queries Q1,Q2,...,Qn so that γi1 ≥ γi2 ≥ ... ≥ γin

C′ ← C
λ′ ← C ∗ λ
for j = 1 to n do
xij ← min { �C′/Cij �, λ′ }
C′← C′ − xij ∗ Cij

λ′← λ′ − xij

if C′ ≤ 0 or λ′ ≤ 0 then break
end for
x0← λ−Pn

j=1 xj

The details are described in Algorithm 1. In FastShed, the ra-
tio sorting cost is O(n log n) and cost of “for” loop is O(n) re-
spectively. So the total time complexity is O(n log n). Normally,
n � C, so FastShed is much faster than OptShed, though Fast-
Shed cannot guarantee to find an optimal solution. However, in
Section 7, the experiments show that FastShed indeed tends to find
a solution very close to the optimal solution for most cases.

6. SHEDDING MECHANISM
In this section, we examine the implementation of different shed-

ding approaches in XML stream systems. For relational stream
systems, one common implementation is to insert drop boxes into
the plan [10, 1, 3]. However, many XML stream systems use au-
tomata to recognize relevant elements on incoming token streams.
We can consider two options where the input data can be dropped.
One place is when we recognize the tokens using automaton, the
other place is after we have formed the elements from extracted to-
kens. Since dropping them as early as possible can avoid wasted
work, we propose to push the shedding directly into the automaton
as described below.

6.1 In-Automata Shedding Mechanism
Here we propose to incorporate shedding into the automaton by

disabling states. Assume we want to drop patterns $a//name and
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$a/contact/tel. Figure 8 shows where to insert drop boxes in the au-
tomaton. To drop pattern $a//name, the automaton would temporar-
ily remove the transition from state s2 to s3. When the start tag of
name element arrives, state s3 and s4 are not reachable. Thus
it would not invoke its downstream operator, Extract$a//name.
Extract$a//name will then be labeled with a “dropped” flag.
This flag guarantees that the downstream StructuralJoin$a op-
erator works correctly. Thus when StructuralJoin$a checks its
input operators one by one, if an input operator is labeled with a
“dropped” flag, StructuralJoin$a skips this input.

StructuralJoin $a

s0
list transaction

s1 s2 s5 s7

s6tel

email

Extract $a/contact/tel Extract $a/contact/emailExtract $a//nameop2

op1

s4

contact

s8
order …

…

…

s3
*

λ

name

Figure 8: Disable Transition Strategy

6.2 Random Shedding in XML Streams
To compare our shedding solutions with the existing random

shedding approach, we have to realize random shedding for XML
stream systems. We do not want to disadvantage this existing so-
lution by first storing data in buffer before dropping. Instead we
propose to also perform random shedding in the automaton. Since
the granularity of incoming data in XML streams is tokens, the start
token of the topmost elements is recognized by the automaton. We
then can set the “shedding phase” flag to be true. As long as this
flag is true, the incoming tokens are dropped. At the same time,
we add a drop counter to record how many topmost elements we
have dropped. Whenever the end token of the topmost element is
identified, the counter’s value is increased. If the desired dropping
count is reached, the flag is disabled and the system switches back
to the “non-shedding” phase.

6.3 Shed Query Switching at Run-time
We support a mixture of shed queries. Assume OptShed provides

a solution vector, say <60, 10, 20>. In this case, we will first drop
60 topmost elements, then run query Q1 for 10 topmost element,
then switch to query Q2 for the next 20 topmost elements. We use
a counter to record the number of topmost elements that have been
run with queryQi. After processing the last end tag of the xith top-
most element, the system restores the removed state transition and
then switches to the next shed query. Since the switching happens
only after the processing of the last token of the topmost element,
it is safe to switch to another query for the next topmost element.
Note that here we simply apply the state transition disabling and
labeling “dropped” flag, we do not otherwise physically change the
plan. Thus the overhead is very small.

7. EXPERIMENTAL RESULTS
We use ToXgene [4] to generate XML documents as our test-

ing data. All experiments are run on a 2.8GHz Pentium processor
with 512MB memory. We use query Q1 as testing query and the

testing data files are about 30 MB. We perform four sets of ex-
periments. The first one shows that output utility changes with
varying arrival rates for all three shedding approaches (Random,
OptShed and FastShed). The second set of experiments demon-
strates that different distributions of pattern preference settings and
pattern sizes impact the output utility. The third set compares the
overhead of three shedding strategies. It shows that FastShed has
little overhead, similar to Random shedding. However, the over-
head of OptShed becomes big for large query sizes. The final set of
experiments shows FastShed achieves close-to-maximum utility in
practically all cases considered.

7.1 Comparing Three Shedding Approaches
In this set of experiments, we study the output utility changes

with varying arrival rates for the three shedding approaches. Fig. 9
shows the output data utility per second for query Q1. Note that
in Fig. 9 the three slopes increase the same way when arrival rate
is less than 180 topmost elements/s because no shedding happens
at that time. After the arrival rate reaches 180 topmost elements/s,
the utility of Random remains stable because it has reached its pro-
cessing capacity. However, FastShed and OptShed achieve higher
utility because they choose a shed query which generates higher
utility than the Random approach.
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Figure 9: Output Utility Changes with Varying Arrival Rates

7.2 Effect of Preference and Pattern Size
Next, we illustrate the output utility is affected by the distribu-

tion of pattern preferences as well as the pattern sizes in the query.
It implies that the assignment of preferences indeed affects which
shed query will be chosen to run at shedding phase. The definition
of pattern size is given by: Pi = NPi*SPi where NPi is the num-
ber of elements corresponding to pattern Pi in a topmost element
and SPi is the average number of tokens contained in a Pi element.

We use five different sets of preference settings which differ in
their standard deviations. We run query Q1 on the same data set.
Each pattern has the same size and each set has the same utility
for the initial query. Figure 10 shows that the output utility is
higher when there is a bigger variance among pattern preference
settings for FastShed and OptShed. We observe that the utilities
of the query achieved by the Random approach are the same be-
cause the initial query is executed in this case. However, OptShed
and FastShed perform differently when the standard deviation for
preferences changes. Observe that when the standard deviation of
preference values is small, there is little difference among utilities
for the three approaches. However, the difference of output util-
ity is significant when the standard deviation of preference values
reaches 0.5.

To illustrate the output utility is affected by the pattern sizes, we
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Figure 10: Data Utilities for Varying Preference Assignments

generate five testing data files which differ in their standard devia-
tion of element sizes.We run the query Q2 below.

Q2: FOR $o in stream("sample")/list/o
RETURN $o/P1, $o/P2, $o/P3, $o/P4

Note that each data file only contains the elements in the query
and the sums of all element sizes in each data file are all equal to
200 tokens. In addition we assume all patterns in the query are
independent and of equal preference. Figure 11 shows the output
utility changes with varying standard deviation of pattern size dur-
ing the same time period. Observe that for the Random approach,
the output utilities do not change a lot since the UPC of the orig-
inal query for these four data files are almost the same. However,
for FastShed and OptShed, the output utilities are much higher than
the utilities achieved by Random approach when the standard de-
viation of pattern size increases. This is because the shed queries
with smaller patterns has smaller locating cost and buffering cost,
resulting in lower overall processing cost. In this case FastShed
and OptShed would pick such shed queries since they have rela-
tively higher utility/cost ratios and thus higher utilities.
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Figure 11: Data Utilities for Varying Pattern Size

7.3 Overhead of Shedding Approaches
Here we study the overhead of the three shedding strategies. The

overhead is measured by the time spent on choosing which shed
query to run during the shedding phase. We study whether with
more complex queries the overhead increases dramatically. We use
five queries which vary in the number of patterns. From Figure 12,
we observe even when the query becomes complex, the overhead of
FastShed is still very small, although it is a bit higher than Random

shedding. However, for OptShed, overhead is already very high
when the number of patterns in the query is 5. Thus the overhead
of OptShed is very big, implying it as an undesirable choice.
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Figure 12: Overhead of Three Shedding Approaches

7.4 Additional Experiments
In the first two experiments above, we observe that FastShed and

OptShed perform better than Random shedding on output utility.
However, we only compared them based on a limited number of
preference settings. Now, we want to study performance of these
methods over a wide range of cases. We generate 1000 sets of
sample costs and utility measures, where a sample set is generated
by assigning preferences to different query patterns randomly. The
costs of different shed queries in a sample set are assigned ran-
domly in the range [10, 20], and at the same time ensuring that the
cost of a “smaller” query is less than the cost of a “bigger” query.
Then we run the three approaches on these 1000 sets of sample data
and compare their output utility. Figure 13(a) shows the histogram
on the utility ratios of FastShed over OptShed. We observe that
these ratios are skewed to the left. About 80% of them are over 0.8.
This means that FastShed can get close to optimal results in most
cases. Figure 13(b) shows the histogram of output utility ratios of
Random over FastShed. Observe that these ratios are skewed to the
right. Most of them are less than 0.6. Thus FastShed is much better
than Random shedding.

(a) (b)

Figure 13: Utility Ratios of (a) FastShed over OptShed (b) Ran-
dom over FastShed

8. RELATED WORK
In streaming systems, load shedding and sampling data are two

common ways to reduce the system workload. Load shedding on
relational streaming data has first been proposed in Aurora [10].
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This work introduces two types of load shedding: random and se-
mantic. Based on the analysis of the loss/gain rate, random load
shedding determines the amount to shed to guarantee the output
rate. For semantic drop, they assume that different tuple values
vary in terms of utility to the application. In XML streams, instead
of a simplistic model of certain domain value denoting utility, we
consider the complexity as well as importance of XML result struc-
tures in order to make shed query decisions.

Most approximate query processing works in relational streams
focus on the max-subset goal, namely, to maximize the output rate [9,
7, 1, 26]. [7] provides an optimal offline algorithm for join pro-
cessing with sliding windows where the tuples that will arrive in
the future are known to the algorithm. [24] proposes an age-based
stream model and give the load shedding approach for join process-
ing with sliding windows under memory-limited resources. For
CPU limitation scenario, [9] provides an adaptive CPU load shed-
ding approach for window stream joins which follows a selective
processing tuple methodology in windows. We can not apply these
approximate processing techniques directly into our work since we
are targeting a single XML stream without window constraints.

Preference model is used for decision making purposes in many
applications, such as e-commerce and personalized web services.
As mentioned before, Aurora [10] combines the utility of different
tuple values into quality of service. [19] proposes Preference SQL,
an extension of SQL which is able to support user-definable pref-
erences for personalized search engines. It supports some basic
preference types, like approximation, maximization and favorites
preference, as well as complex preferences. Preference XPath [11]
provides a language to help users in E-commerce to express explicit
preferences in the form of XPath queries. For view synchronization
in dynamic distributed environments, EVE[20] proposes E-SQL,
an extended view definition language by which preferences about
view evolution can be embedded into the view definition.

9. CONCLUSIONS
In this paper, we propose a new utility-driven load shedding strat-

egy that exploits features specific to XML stream processing. Our
preference model for XQuery helps users to customize their pref-
erences on different XML result structures. In addition we design
a cost model for estimating the costs of different shed queries. We
put forward two shed query search solutions, OptShed and Fast-
Shed that choose a subset of shed queries to be executed in order to
maximize utility. Our experiments illustrate the performance gains
of these two approaches in output utility compared with existing
shedding solutions. As our future work, we intend to explore the
integration of a value-based preference model into our structure-
based preference model solution. Another direction is considering
additional objectives beyond output quality, such as output rate.

10. REFERENCES
[1] A. M. Ayad and J. F. Naughton. Static optimization of

conjunctive queries with sliding windows over infinite
streams. In SIGMOD, pages 419–430, 2004.

[2] B. Babcock, M. Datar, and R. Motwani. Load shedding
techniques for data stream systems. In MPDS, 2003.

[3] B. Babcock, M. Datar, and R. Motwani. Load shedding for
aggregation queries over data streams. In ICDE, pages
350–361, 2004.

[4] D. Barbosa, A. O. Mendelzon, J. Keenleyside, and K. A.
Lyons. Toxgene: An extensible template-based data
generator for xml. In WebDB, pages 49–54, 2002.

[5] C. Koch et al. FluxQuery: An Optimizing XQuery Processor
for Streaming XML Data. In VLDB, pages 228–239, 2004.

[6] L. Chen. Semantic Caching for XML Queries. PhD thesis,
Worcester Polytechnic Institute, 2004.

[7] A. Das, J. Gehrke, and M. Riedewald. Approximate join
processing over data streams. In SIGMOD, pages 40–51,
2003.

[8] Y. Diao and M. Franklin. Query Processing for High-Volume
XML Message Brokering. In VLDB, pages 261–272, 2003.

[9] B. G. et al. Adaptive load shedding for windowed stream
joins. In CIKM, pages 171–178, 2005.

[10] N. T. et al. Load shedding on data streams. In VLDB, pages
309–320, 2003.

[11] W. K. et al. Preference xpath- a query language for
e-commerce. In 5th International Conference
Wirtschaftsinformatic, pages 427–440, 2001.

[12] P. C. Fishburn. Utility theory for decision making. 1970.
[13] P. C. Fishburn. Preference structures and their numerical

representations. Theor. Comput. Sci., 217(2):359–383, 1999.
[14] A. Gupta and D. Suciu. Stream Processing of XPath Queries

with Predicates. In ACM SIGMOD, pages 419–430, 2003.
[15] Hong Su, Jinhui Jian and Elke A. Rundensteiner. Raindrop:

A Uniform and Layered Algebraic Framework for XQueries
on XML Streams. In CIKM, pages 279–286, 2003.

[16] Z. Ives, A. Halevy, and D. Weld. An XML Query Engine for
Network-Bound Data. VLDB Journal, 11(4)(380-402), 2002.

[17] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack
Problems. Springer-Verlag, 2005.

[18] W. Kießling and H. B. Optimizing preference queries for
personalized web services. In Communications, Internet, and
Information Technology, 2002.

[19] W. Kießling and G. Köstler. Preference sql - design,
implementation, experiences. In VLDB, pages 990–1001,
2002.

[20] A. J. Lee, A. Nica, and E. A. Rundensteiner. The EVE
approach: View synchronization in dynamic distributed
environments. IEEE Trans. Knowl. Data Eng.,
14(5):931–954, 2002.

[21] B. Ludascher, P. Mukhopadhyay, and Y. Papakonstantinou. A
Transducer-Based XML Query Processor. In VLDB, pages
227–238, 2002.

[22] F. Peng and S. Chawathe. XPath Queries on Streaming Data.
In ACM SIGMOD, pages 431–442, 2003.

[23] D. Pisinger. Algorithms for Knapsack Problem. PhD thesis,
University of Copenhagen, 1995.

[24] U. Srivastava and J. Widom. Memory-limited execution of
windowed stream joins. In VLDB, pages 324–335, 2004.

[25] H. Su, E. A. Rundensteiner, and M. Mani. Automaton in or
out: Run-time plan optimization for xml stream processing.
In SSPS Workshop, EDBT, 2008.

[26] N. Tatbul and S. B. Zdonik. Window-aware load shedding
for aggregation queries over data streams. In VLDB, pages
799–810, 2006.

[27] M. Wei, E. A. Rundensteiner, and M. Mani. Load shedding
in XML streams. Technical report, Worcester Polytechnic
Institute, 2007.

874

WWW 2008 / Refereed Track: XML and Web Data - XML II April 21-25, 2008 · Beijing, China


