
DTWiki: A Disconnection and Intermittency Tolerant Wiki

Bowei Du
Computer Science Division

445 Soda Hall
University of California, Berkeley

Berkeley, CA 94720-1776
bowei@cs.berkeley.edu

Eric A. Brewer
Computer Science Division

623 Soda Hall
University of California, Berkeley

Berkeley, CA 94720-1776
brewer@cs.berkeley.edu

ABSTRACT
Wikis have proven to be a valuable tool for collaboration and con-
tent generation on the web. Simple semantics and ease-of-use make
wiki systems well suited for meeting many emerging region needs
in the areas of education, collaboration and local content genera-
tion. Despite their usefulness, current wiki software does not work
well in the network environments found in emerging regions. For
example, it is common to have long-lasting network partitions due
to cost, power and poor connectivity. Network partitions make a
traditional centralized wiki architecture unusable due to the un-
availability of the central server. Existing solutions towards ad-
dressing connectivity problems include web-caching proxies and
snapshot distribution. While proxies and snapshots allow wiki data
to be read while disconnected, they prevent users from contributing
updates back to the wiki.

In this paper we detail the design and implementation of DTWiki,
a wiki system which explicitly addresses the problem of operating
a wiki system in an intermittent environment. The DTWiki system
is able to cope with long-lasting partitions and bad connectivity
while providing the functionality of popular wiki software such as
MediaWiki and TWiki.

Categories and Subject Descriptors
H.4.0 [Information Systems]: Information System Applications-
General; J.0 [Computer Applications]: General

General Terms
Design

Keywords
Wiki, Delay-Tolerant Networking, Developing Regions

1. INTRODUCTION
The online collaborative encyclopedia Wikipedia [27] constitutes

(as of January, 2008) approximately 7.5 million user-contributed
articles and is among the top ten most visited websites in the world.
Although article growth has tapered off with the project’s maturity,
the web site has grown organically since its inception in 2001. A
critical piece of the success of Wikipedia has been the ease with

This material is based upon work supported by the National Science Foun-
dation under Grant No. 0326582.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

which the users can participate in writing Wikipedia articles. The
popularity of “wikis” [4] as website content management software
also speaks to the usefulness of the medium. Generally speaking,
wikis have proven to be an excellent tool for collaboration and con-
tent generation.

Several aspects of wikis are interesting for the emerging regions
context. First, there is a great need in emerging regions for content
that is locally relevant. Local content can take a variety of forms,
from a local translation of existing online material to the commu-
nity knowledge bases. Most of the content on the web today is
written in English and targeted towards in the industrialized world.
Many information communications and technology (ICT) for de-
velopment programs seek to address this issue with a local content
generation effort using website creation tools [2, 12]. Training is
needed to become proficient in website authoring. Wikis are well
suited to fill this niche because they combine both content creation
and content sharing into a tool that is easy to use. The Wikipedia
experience shows that interested user base can quickly generate a
large amount of useful wiki content.

Second, the wiki model satisfies many organizational needs for
collaboration and document sharing. Because wiki documents are
unstructured, users can use shared pages as a whiteboard without
being overly burdened by system-enforced semantics and schemas.
Annotations and discussions are easily incorporated into a wiki
page along with the main content. Many wikis also implement
some form of revision control system, which is a powerful tool for
managing multiple concurrent user modifications.

Finally, there is a large demand for the content generated in ex-
isting online wikis. Many educationally-focused non-governmental
organizations (NGOs) distribute snapshots of Wikipedia content as
part of their digital classroom material. [28, 15, 11] Although snap-
shots are useful, they result in a unidirectional flow of information.
A wiki that has a bidirectional information flow would allow local
student discussions to connect with the wider community on the
Internet. This is something that is not possible with a snapshot or
caching-based approach.

To date, the use of wiki software in the emerging region con-
text has been hampered by a lack of reliable Internet connectivity.
This is primarily due to the centralized web architecture of wiki
software. For example, the data backend for the popular Wikipedia
website consists of a single database master replicated in a cluster
environment. This kind of architecture precludes the use of wikis in
environments where there are long lasting network partitions sep-
arating “well-connected” islands of users from each other and the
Internet. Common examples of such environments include Inter-
net cafés and schools that are disconnected from the network due
to poor infrastructure or a desire to reduce connection costs. In
these scenarios, users are able to communicate within the local net-

945

work, but cannot always reach the Internet. More esoteric examples
include locations serviced by “sneaker net” or a mechanical back-
haul [19, 16].

Despite wiki’s centralized provenance, the basic wiki data model
is a good candidate for intermittent networks and disconnected op-
eration. Wiki systems already have to handle the possibility of con-
flicting concurrent user edits that can occur due to stale browser
data. In addition, the central metaphor of the wiki, that of a page,
provides an obvious boundary for data sharing and data consis-
tency. The loose semantics of the wiki application also tempers
user expectations for conflict resolution. On the Wikipedia website
for example, users frequently perform minor edits to “fix” content
such as correcting spelling or grammar. User intervention in re-
solving conflicts fits this usage pattern.

Finally, we note that many of the auxiliary operations of wikis,
e.g. presentation and search, are functions that can be implemented
with the information available locally with no need for distributed
state.

We build on the work of Delay-tolerant Networking (DTN) [3,
7], which provides a messaging layer that handles intermittency and
disconnection, manages communications links as they go up and
down, and provides durable storage for messages in transit. On top
of DTN, we built a replicated file system, TierStore, that manages
file consistency and replication. DTWiki is built as an application
on top of this file system.

This paper describes the design and implementation of DTWiki,
a wiki that enables bi-directional collaboration among users work-
ing in disconnected network environments. The paper is organized
as follows: First, in Section 2, we make the term “wiki” more pre-
cise by distilling a functional specification from a survey of pop-
ular wiki systems and discuss what features are desired in a dis-
connected wiki. We then describe how DTWiki is implemented in
Section 3. Finally, we demonstrate that our prototype performs ade-
quately in Section 4, review related work in Section 5 and conclude
in Section 6.

2. WIKI NATURE
Because wiki software ranges in implementation size from a

two-hundred byte shell script to full-blown content-management
systems, we took the top five wikis as referenced by the popular
wiki website c2 [26] as a basis for determining the key function-
ality needed for wiki software. The methodology used by c2 to
rank wiki engines is to compare Google search hit counts for each
of the wiki engines. We are careful to note that this is not at all a
scientific sampling, however, it should serve to provide a flavor of
the feature sets of wiki software. We note that most of the code in
wiki software stack concerns rendering and formatting. Although
presentation is important, it is the semantics of the shared data that
affects how the system is constructed. Table 1 summarizes the fea-
tures of the top five wiki platforms [8, 24, 22, 18, 17].

At the most basic level, wikis comprise a set of user-editable web
pages written in a simplified markup language. Referenced pages
in the wiki are automatically generated as they are linked. The gen-
eral aim of the wiki application is fast and easy content creation.
All of the top five wiki systems track edit history in addition to page
contents. This version control system allows users to retrieve pre-
vious versions of a page. Version control brings all of the benefits
of automatic revisioning to concurrent multi-user environments.

As wikis have moved away from their original open, “free for
all”, model of user contribution to one with more structure, the
management of user accounts has become part of the wiki system.
User accounts determine access control for pages on the wiki site.

Content creation is the product of a collaboration among partic-

Internet

Wiki
server

Internet

Wiki
server

(a) Proxy/Caching (b) DTWiki

Figure 1: A comparison between the proxy/caching architec-
ture and the DTWiki architecture. Each cloud represents a
potentially long-lasting partition of the network. In the proxy
architecture, updates only flow from the Internet-based server,
while in the DTWiki architecture, wiki updates can be made
and disseminated from any of the clouds.

ipating users. Most of the top five popular wikis devote a separate
content namespace for discussions among users. The discussion
page could be implemented as an ordinary wiki page, although it
may be more appropriate to structure it as an append-only chat log,
which more closely matches the desired semantics.

Finally, all five wiki systems have search and indexing function-
ality to enable users to browse created content efficiently. Thus for
DTWiki to be considered to be feature complete, we need to have
revision tracked hypertext pages, some form of integrated user ac-
count storage, a discussion oriented set of pages, and text search
and indexing capabilities.

2.1 Wikis For Intermittent Environments
The current approach to bringing wikis and wiki content to poorly

networked environments is to create a mirror of the wiki site, either
by taking a static web crawl of the site or by running a copy of
the wiki software on a server on the partitioned side of the network
from a database snapshot. Figure 1a depicts such a setup. Con-
tent hosted on the Internet based wiki server is cached or pushed
out to the disconnected clients in each network partition. Clients
view wiki content on the local server on the intranet but have no
interaction with the site hosted on the Internet.

The problem with using snapshots and local caching schemes
is that the local content has become divorced from updates to the
main content. In addition, contributions of the local users are either
not possible or they are difficult to share with other parts of the
network. This turns the user contribution based wiki model into a
static, read-only web page.

In the DTWiki system architecture that is depicted in Figure 1b,
clients can locally modify their wiki state at any time. Changed
content from the Internet wiki as well as those in the intermittently
connected networks are synchronized across temporary network
partitions and bad communication links. Entry into the wiki system
only involves connecting the local DTWiki server to an upstream
DTWiki host via DTN. Once the underlying network routing has
been established, wiki content is transparently shared among DTWiki
hosts.

Finally we note that using a external synchronization mechanism
such as rsync [23] to keep wiki databases in each partition up to
date does not work well because it is not integrated into the wiki
semantics nor does it handle concurrent update conflicts. Also, re-
placing the underlying IP protocol with a Delay-Tolerant transport
is not sufficient because the HTTP protocol between the client and
server behaves poorly given long network roundtrip times.

946

Wiki Implementation Features
MediaWiki PHP, SQL storage Revision history, ACLs, discussion pages, rich media, search, plugins
TWiki PHP, RCS, SQL Revision history, ACLs, SQL database integration (forms), rich media, search, plug-

ins
TikiWiki PHP, SQL Revision history, ACLs, full fledged content management system, search, plugins
PukiWiki PHP, file system Revision history, file attachments
PhpWiki PHP, SQL Revision history, file attachments

Table 1: Popular wiki packages and their feature set.

3. IMPLEMENTATION
In this section we detail how DTWiki is implemented. First, we

briefly summarize the interface of TierStore/DTN, which is the file
system platform we used to construct DTWiki. We then describe
how each component of a wiki as described in Section 2 is imple-
mented in DTWiki.

3.1 TierStore
TierStore [6] is a file system for building distributed, delay-tolerant

applications. TierStore uses the Delay-Tolerant Networking (DTN)
stack [5] for network transport, which enables the file system to
be robust across intermittent connectivity and to work over diverse
kinds of network connectivity. The abstraction that TierStore presents
to the application is that of a transparently synchronized shared file
system. TierStore has three major components:

• Transparent synchronization of file system contents.

• Partial replication of shared data.

• Detection and resolution of concurrent update conflicts on
single files.

Changes to the shared TierStore file system are automatically
synchronized with other TierStore hosts in the network, using any
available DTN mechanisms for transport. TierStore guarantees that
changes to a file will not be visible to remote hosts until all local
file handles have been closed. This provides the application with
a mechanism to ensure that inconsistent partial edits to a file never
appear remotely.

Portions of the file system namespace are divided into disjoint
publications that are shared among subscribing TierStore nodes.
Publication boundaries are delineated by a directory and depth. For
example, subscribers of a publication rooted at folder images/ with
depth two will share files in images/ and its first level of subdirec-
tories. Figure 2 shows the three TierStore file systems sharing two
publications: text/ and images/. In Figure 2, node A is sub-
scribed to images/ and text/ while nodes B is only subscribed to
text/ and C is only subscribed to the images/ publication.

Because hosts in the TierStore system may be temporarily par-
titioned, applications using TierStore will inevitably concurrently
update shared state. TierStore is a system that only guarantees co-
herence rather than general consistency. This means that it can only
detect conflicts resulting from concurrent updates to the same file
or file name but cannot impose any ordering constraints across up-
dates to a set of multiple files. When concurrent updates occur, the
TierStore system detects and informs the local application through
application configured resolver functions.

In default case, the TierStore system resolves conflicting file ver-
sions by appending a unique suffix to the remote file in the file sys-
tem. For example, as shown in Figure 2, suppose two TierStore
nodes A and B concurrently update the same file /notes.txt.
After synchronization, the TierStore application on node A will

images/

text/
images/
flower.jpg
bird.jpg

text/
notes.txt
notes.txt.B

text/

images/

text/
notes.txt
notes.txt.A

A

B

C

Figure 2: Three TierStore nodes A, B and C sharing publica-
tions images/ and text/. The file test/notes.txt received a
conflicting update on nodes A and B resulting in a conflict files
notes.txt.A and notes.txt.B

see local edits in /notes.txt while the edits from node B will
be in /notes.txt.B. However, at node B, local edits will be in
notes.txt and node A’s edits in notes.txt.A. Although the de-
fault resolution procedure is primitive, it turns out that this is suffi-
cient for implementing all of the functionality needed by DTWiki.

Finally, TierStore has support for application hooks that function
similar to the inotify function in Linux for notifying the applica-
tion to take action when changes to the file system arrive. These
are useful for maintaining structured data (such as indices) derived
from the state stored within TierStore.

3.2 Data Schema
Most existing wiki software store data using a SQL database. In

the case of DTWiki the data layout is complicated due to three con-
cerns. First, because the underlying storage is a file system, we
need to organize the layout in a manner that is efficient to access.
Second, because TierStore only supports object coherence, we need
to guarantee that the wiki does not require consistency across mul-
tiple files. As stated earlier, the TierStore system cannot give any
ordering guarantee with respect to updates of two different files as
they are received on remote hosts. Finally, shared files in the Tier-
Store system will result in conflicting versions. Conflicts must be
dealt with in a way that makes sense to the user and does not result
in invalid states for the application.

Our strategies for dealing with these requirements are as follows:
We attempt to make each piece of data (e.g. file) shared in TierStore
as self-contained as possible. For instance, all attributes related to
a data object are pushed into the object itself. The primary way by
which an object is named is used to organize the file system hier-
archy. Auxiliary methods of reference (such as external databases
indexing the content) are handled by inserting hooks into the Tier-
Store update notification system to update an external database with
indexing information whenever updates arrive. Finally, conflicts in

947

wiki:
dictionary

user
accounts

wiki:
encyclopedia

revisions pages discuss revisions
9aba
4373 Plants

Alice Bob
...

TierStore File System

Figure 3: The data layout of the DTWiki. The arrow indicates
a symbolic link.

shared state are either 1) handled via a semantically well-defined
merge process, or 2) avoided by the use of techniques such as glob-
ally unique names or content-based naming.

We now describe each component of DTWiki data backend in
detail. Figure 3 is a summary of the general data layout of DTWiki
in the TierStore file system.

3.3 Pages and Revisions
The central data object in DTWiki is that of a page revision. A

new page revision is created whenever a change is made to a wiki
page. A revision stores three things: metadata about the page edit,
the contents of the wiki page itself and the name of the preceding
revisions that the current revision is derived from. Each revision
is a separate file in a revisions/ directory in the TierStore file
system. All revision files are named with a globally unique id.
Figure 4 shows an example revision file.

A separate directory pages/ contains symbolic links with a name
of a page to the revision representing the most current revision in
revisions/. For instance, the page with the title “Wiki Page”
would be symbolic linked to the appropriate revision file in the re-
visions directory.

When two users concurrently update the same wiki page, they
create conflicting symbolic links in the pages/ directory. The de-
fault TierStore conflict resolver renders this by appending a suffix
to each remotely conflicting copy. The wiki software detects the
presence of the conflict and renders to the user a message stating
that a conflict had occurred and displays a merge of the contents of
the conflicting revisions. Note that this is handled similarly to the
case that occurs in current wiki software when a user edit on their
local web browser has become stale due to a concurrent edit, so the
user does not need to learn any new concepts in order to deal with
concurrency.

Previous revision pointers in the metadata allow the wiki system
to derive a revision history of a page. A page may have multiple
previous revisions if the edit occurred during a conflict. When an
edit occurs on a page with conflicting updates, each of the previ-
ously conflicting revisions is added to the previous revisions
field.

3.4 User Accounts
Information about user accounts is stored in the users/ direc-

tory. Figure 4 shows an example user account file. The user ac-
count file contains user login and passwords as well as their access-
control groups. Although update conflicts in the user account file
should be rare, there are natural conflict resolution rules for each
of the mutable fields. For example, the access-control groups that
a user belongs to are a union of the groups in the conflicting files.

Revision File

revision id: 9aba4373
previous revisions: 2487a9e3 544bafe2
date: Wed, 24 Oct 07 8:35:25
user: wikizen@dtn.com 3a424353
page title: Example Page
tags: example wikizen
read: ALL
write: admin

page content. . .

User file

user name: wikizen@dtn.com
user id: 3a424353
password hash: ####
groups: admin

Discussion Entry

user name: wikizen@dtn.com
date: Wed, 24 Oct 07 8:35:25

conversation. . .

Figure 4: Example revision file, user file and discussion file.

3.5 Attachments and Media
Each wiki page can contain attachments of binary files. Rich me-

dia and file attachments are stored in the media/ directory in a file
named by the MD5 hash of its contents. The metadata describing
the attached file is stored in the linking wiki page. This scheme
accomplishes two things. First, the same attachment can be linked
multiple times without requiring additional storage space. Second,
the content hash ensures that no conflicts can be created by a file
upload, eliminating the need for revision control of the media files
in addition to the wiki content.

3.6 Discussion Pages
Creation of wiki content requires some amount of coordination

among users of the system. DTWiki facilitates these discussions by
creating a separate user conversation page for each wiki page in the
system. Some wiki systems implement the conversation page as a
wiki page. We choose to have different semantics for discussions
because multiple updates to the conversation page by multiple users
is expected to be the norm rather than the exception. This means
that the active conversations will be almost constantly in benign
conflict as each user’s conversations should be trivially mergable.

Conversations are stored in discussion/page name/ directory.
Each new comment post by a user about the wiki page is stored
in the directory in a new file named by a new globally unique id.
When viewing the conversation, DTWiki software concatenates all
of the conversation file entries in the discussion directory sorted by
time stamp. The conversation entries are, in effect, organized as an
append-only log.

3.7 Search/Indexing
Searching and indexing are commonly implemented by leverag-

ing search functionality in the SQL database backend of the wiki.
We choose not to replicate search index state via the shared Tier-
Store file system because all of the category and search indexes can

948

Revisions Time per Revision (seconds)
5,000 0.079
10,000 0.084
40,000 0.095

Table 2: Local scalability of the system with respect to the
number of revisions during an import of revisions from the
WikiVersity trace, measured in terms of the time taken per re-
vision imported.

be derived locally from the shared portion of the wiki. Thus, an
off-the-shelf text search engine can be used. All that is required are
the appropriate hooks to freshen the search index when new content
arrives.

TierStore has a script hook system for specifying external scripts
to be run when an update to the file system arrives. DTWiki uses the
update notifications to run an external indexing engine. Our pre-
liminary implementation uses the Apache Lucene search engine,
but any similar text search application could be used.

3.8 Partial Sharing
Wiki sites with a great deal of content such as Wikipedia have

mechanisms to organize their data into disjoint namespaces. For
example, the Wikipedia website is actually a conglomeration of
several separate wikis split by language and by function. The dic-
tionary Wiktionary is occupies a separate namespace from Wikipedia.
In DTWiki, each sub-wiki is placed on a separate TierStore publi-
cation, which enables participating TierStore nodes to subscribe to
the subset of content that they are interested in.

4. EVALUATION
We evaluate our DTWiki prototype for scalability and efficiency.

First, we show that local system can scale to handle content on the
order of Wikipedia-sized loads and that the overhead imposed by
our data schema is not an issue. Second, we show that the DTWiki
system does not incur much additional overhead in terms of band-
width used. Finally, we give the results for a wiki trace replay on a
small simulated network.

All scalability and bandwidth experiments were run on machines
with a Intel Xeon 2.80 GHz processor with 1 gigabyte of memory.
The DTWiki software itself never exceeded 200 MB of resident
RAM during the runs. The trace replay was performed on a set of
1.8GHz Pentium 4 with 1GB of memory.

4.1 Scalability
We tested the scalability of the DTWiki software by taking a

portion of Wikipedia and measuring the time required to import
the data into a local DTWiki system. The data file consists of the
WikiVersity section of the website, 1.4 gigabytes of data total con-
sisting of over 41,470 revisions. Our import software takes each
Wikipedia revision and create a DTWiki revision with the same
content. Table 2 is a graph of number of revisions imported to the
amount of time needed for the import to finish. As shown in the
graph, the DTWiki system scales linearly with the number of im-
ported articles.

We also tested the response time of the DTWiki after the import
of the data in terms of latency per page load. This was done by
picking 1,000 pages randomly from the wiki and loading their con-
tents. (Note: this does not include time spend rendering the web
page in the browser.) This experiment was performed ten times.
Page loads took on the average 7.8 ms to retrieve.

Revisions Network Content Overhead
100 1,000,829 982,369 1.8%
500 5,564,302 5,438,636 2.3%

1000 8,009,046 7,749,412 3.2%

Table 3: Overhead of DTWiki in network traffic for synchro-
nization with various number of revisions. Network and Con-
tent sizes are measured in bytes.

4.2 Bandwidth
Our DTWiki prototype has be competitive with existing approaches

for web caching and file synchronization. To test whether this is
true, we compare the bandwidth consumed by two DTWiki syn-
chronizing their contents versus the size of the contents itself. The
test data was generated from the WikiVersity dump used above.
The experiment was run using 100, 500 and 1,000 revisions. Table
3 summarizes the result of the experiment. Overhead is measured
as the percentage of extra network traffic versus the total size of the
shared content.

4.3 Simulated Usage
In order to obtain a sense of the usability of the DTWiki system

in a real network environment, we ran a time-scaled simulated us-
age pattern from a three month segment of the same WikiVersity
trace on a real DTWiki system. The network consisted of a star
topology with a single central DTWiki node and three leaf DTWiki
nodes. The network connectivity between the nodes was controlled
using a network traffic shaper to simulate disconnections. Two of
the leaf nodes was given nightly connectivity (from 18:00 to 6:00)
to emulate the conditions of a nightly scheduled dial-up connection
of a remote school. The remaining leaf node was left always con-
nected the central node to simulate an Internet connected client. In
order for the simulation to finish in a reasonable amount of time,
each second in the experiment was simulated by 0.005 seconds of
wall clock time.

Revision edit history from the months of October, November and
December in year 2007 was used to generate the simulated page
edits. The edits were distributed among the three leaf nodes by
randomly dividing the user population in three equal parts and as-
signing each set of users to a particular node. The trace data con-
tained 12,964 revisions on 2,677 different pages from a total of 792
authors over the three month period.

Figure 5 shows the average number of updates to pages at a node
during the 3-month period versus the number of conflicts detected
by the DTWiki system. The conflict rate was 10 pages or less for
63 of the days in the simulation; however, there were bursts in the
conflict rate above 30 conflicts for four days during the trace run.
We note that the high conflict rate may be due to the random as-
signment of authors to nodes. A real-world assignment may ex-
hibit more more author locality in edits which would reduce the
edit conflict rate. In addition the conflict rate is conservative due
to the fact we don’t distinguish between conflicts that are automat-
ically mergeable versus those that require user intervention.

5. RELATED WORK
DTWiki is closely related to a class of proxy applications that

aim to make traditionally network-based services available when
the hosts are disconnected. WWWOFFLE [29], NOFFLE [13] and
OfflineIMAP [14], are respectively, proxies which provide clients
cached offline access for HTTP, NEWS and IMAP servers. The
TEK [21] project is a web caching proxy which has been designed

949

 600
 500
 400
 300
 200
 100

 0
 0 20 40 60 80 100 120

Pa
ge

s

Days

Updates
Conflicts

Figure 5: The average number of pages updates and conflicts that occur over a period of 120 days at a node using a replayed
WikiVersity trace and simulated network with scheduled disconnections.

specifically for addressing connectivity issues of emerging regions.
TEK uses e-mail as transport and supports transcoding and com-
pression.

The design of these systems has focused mostly on the single
disconnection scenario in which the intermittent connection sep-
arates the user(s) from the Internet. DTWiki provides wiki func-
tionality for arbitrary combination of network topologies and in-
termittency. With regard to flexible use of network topology, the
DTWiki system is related to the Lotus Notes [10], Bayou [20] peer-
to-peer groupware systems. Both systems predate the modern con-
ception of wikis. Lotus Notes has similar structure and goals. The
central data structure of the Lotus system is the note, which is a
semi-structured document that can cross reference other notes in
the system. Bayou is a general system for building applications in
intermittent networks. The authors of the Bayou system implement
several structured collaboration applications such as a shared cal-
endar and a shared bibliographic database, but did not investigate
shared intermittently connected hypertext systems.

The concept of revisions and concurrent edit management is sim-
ilar to the functionality of version control systems such as CVS and
Mercurial [25, 9] which allow disconnected locals edits and reso-
lution of conflicts cause by remote users. The difference is that
our use of the DTN and TierStore software architecture allows us
to handle arbitrary network topologies and more exotic forms of
transport. We also note that the semantics of the wiki page is sim-
pler than that of an arbitrary file system operation. For instance, we
don’t support tracking atomic changes across multiple pages.

6. CONCLUSION
In this paper, we present DTWiki, a system for collaborative

content creation in networks where disconnection is the expected
norm. DTWiki offers the full power of an online wiki coupled with
the ability to perform local edits and local content creation while
partitioned from the network. The DTWiki system is adaptable to
arbitrary kinds of network topologies and disconnection patterns.
The adaptation of the wiki feature set to work in a disconnected
was surprisingly straightforward. One factor that worked to our ad-
vantage is the simple semantics of the wiki application, which were
easy to map to the TierStore coherency model.

On the technical front, we intend to investigate whether other
pieces of online content management systems are conducive to be-
ing built in a manner similar to DTWiki. There are also opportuni-
ties in improving the integration of the data model to traffic prior-
itization. As the system is currently implemented, revision data is
not prioritized for newer copies of the wiki page. Ideally, fresher
pages should be delivered in front of older pages, presumably be-

cause the older revisions are less useful. Also, there may also be
a better data partitioning to enable finer grain sharing than whole
wiki namespaces.

Our experience with DTWiki has found that while the consis-
tency model of TierStore is appropriate for the wiki application,
the file system programming interface is somewhat awkward for
application programmers. We are investigating a separate database
oriented interface to TierStore to allow for easier integration with
existing database-based software.

It is our suspicion that there is much to be gained by enabling
bidirectional sharing of information in the unstructured, easy-to-
use format of a wiki. Not only will such a system enable the gener-
ation of local content, but the presence of a globally shared “white
board” can be adapted by hand to a myriad of different applica-
tions. We plan to integrate the DTWiki system with efforts such as
the AVOIR [1] in a real-world deployment to test our hypothesis.

7. REFERENCES
[1] AFRICAN VIRTUAL OPEN INITIATIVES AND RESOURCES.

http://avoir.uwc.ac.za/avoir/index.php.
[2] ASIA FOUNDATION. Cambodia Information Centers.

http://www.cambodia.org.
[3] CERF, V. ET AL. Delay-tolerant network architecture internet

draft, Sept. 2006. draft-irtf-dtnrg-arch-05.txt.
[4] CUNNINGHAM, W., AND LEUF, B. The Wiki Way: Quick

Collaboration on the Web. Addison-Wesley Professional,
April 2001.

[5] DEMMER, M., BREWER, E., FALL, K., JAIN, S., HO, M.,
AND PATRA, R. Implementing Delay Tolerant Networking.
Tech. Rep. IRB-TR-04-020, Intel Research Berkeley, Dec.
2004.

[6] DEMMER, M., DU, B., AND BREWER, E. TierStore: A
Distributed File-System for Challenged Networks in
Developing Regions. In FAST: File and Storage Technologies
(Feburary 2008).

[7] FALL, K. A delay-tolerant network architecture for
challenged internets. In SIGCOMM 2003.

[8] MEDIAWIKI. http://www.mediawiki.org.
[9] MERCURIAL: A LIGHTWEIGHT SOURCE CONTROL

MANAGEMENT SYSTEM.
http://www.selenic.com/mercurial/wiki/.

[10] MOHAN, C. A database perspective on lotus domino/notes.
In SIGMOD Conference (1999), p. 507.

[11] MOULIN. Wikimedia by moulin.
http://www.moulinwiki.org/.

950

[12] M.S. SWAMINATHAN RESEARCH FOUNDATION.
http://www.mssrf.org/.

[13] NOFFLE NEWS SERVER.
http://noffle.sourceforge.net.

[14] OFFLINEIMAP.
http://software.complete.org/offlineimap.

[15] ONE LAPTOP PER CHILD PROJECT.
http://www.laptop.org/.

[16] PENTLAND, A. S., FLETCHER, R., AND HASSON, A.
Daknet: Rethinking connectivity in developing nations.
IEEE Computer (Jan. 2004).

[17] PHPWIKI. http://phpwiki.sourceforge.net.
[18] PUKIWIKI. http://pukiwiki.sourceforge.jp.
[19] SETH, A., KROEKER, D., ZAHARIA, M., GUO, S., AND

KESHAV, S. Low-cost communication for rural internet
kiosks using mechanical backhaul. In MobiCom ’06:
Proceedings of the 12th annual international conference on
Mobile computing and networking (2006).

[20] TERRY, D. B., THEIMER, M. M., PETERSEN, K.,
DEMERS, A. J., SPREITZER, M. J., AND HAUSER, C. H.
Managing update conflicts in Bayou, a weakly connected
replicated storage system. In SOSP 1995.

[21] THIES, W., PREVOST, J., MAHTAB, T., CUEVAS, G.,
SHAKHSHIR, S., ARTOLA, A., VO, B., LITVAK, Y.,
CHAN, S., HENDERSON, S., HALSEY, M., LEVISON, L.,
AND AMARASINGHE, S. Searching the world wide web in
low-connectivity communities. In WWW 2002.

[22] TIKIWIKI. http://tikiwiki.org.
[23] TRIDGELL, A., AND MACKERRAS, P. The rsync algorithm.

Tech. Rep. TR-CS-96-05, Australian National Univ., June
1996.

[24] TWIKI. http://twiki.org.
[25] VERPERMAN, J. Essential CVS. O’Reilly Books, 2003.
[26] WARD CUNNINGHAM. Wiki Engines.

http://c2.com/cgi/wiki?WikiEngines.
[27] WIKIPEDIA. http://www.wikipedia.org/.
[28] Wizzy Digital Courier. http://www.wizzy.org.za/.
[29] WWWOFFLE: WORLD WIDE WEB OFFLINE EXPLORER.

http://www.gedanken.demon.co.uk/wwwoffle/.

951

